IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3716.html
   My bibliography  Save this article

Ballistic-like supercurrent in suspended graphene Josephson weak links

Author

Listed:
  • Naomi Mizuno

    (Stony Brook University
    Present address: Department of Physics, the City College of New York, New York 10031, USA)

  • Bent Nielsen

    (Stony Brook University)

  • Xu Du

    (Stony Brook University)

Abstract

The interplay of the massless Dirac fermions in graphene and the Cooper pair states in a superconductor has the potential to give rise to exotic physical phenomena and useful device applications. But to date, the junctions formed between graphene and superconductors on conventional substrates have been highly disordered. Charge scattering and potential fluctuations caused by such disorder are believed to have prevented the emergence or observation of new physics. Here we propose to address this problem by forming suspended graphene–superconductor junctions. We demonstrate the fabrication of high-quality suspended monolayer graphene–NbN Josephson junctions with device mobility in excess of 150,000 cm2 per Vs, minimum carrier density below 1010 cm−2, and the flow of a supercurrent at critical temperatures greater than 2 K. The characteristics of our Josephson junctions are consistent with ballistic transport, with a linear dependence on the Fermi energy that reflects of linear dispersion of massless Dirac fermions.

Suggested Citation

  • Naomi Mizuno & Bent Nielsen & Xu Du, 2013. "Ballistic-like supercurrent in suspended graphene Josephson weak links," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3716
    DOI: 10.1038/ncomms3716
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3716
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spagnolo, B. & Valenti, D. & Guarcello, C. & Carollo, A. & Persano Adorno, D. & Spezia, S. & Pizzolato, N. & Di Paola, B., 2015. "Noise-induced effects in nonlinear relaxation of condensed matter systems," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 412-424.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.