IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3624.html
   My bibliography  Save this article

Stochastic switching of cantilever motion

Author

Listed:
  • Warner J. Venstra

    (Kavli Institute of Nanoscience, Delft University of Technology)

  • Hidde J. R. Westra

    (Kavli Institute of Nanoscience, Delft University of Technology)

  • Herre S. J. van der Zant

    (Kavli Institute of Nanoscience, Delft University of Technology)

Abstract

The cantilever is a prototype of a highly compliant mechanical system and has an instrumental role in nanotechnology, enabling surface microscopy, and ultrasensitive force and mass measurements. Here we report fluctuation-induced transitions between two stable states of a strongly driven microcantilever. Geometric nonlinearity gives rise to an amplitude-dependent resonance frequency and bifurcation occurs beyond a critical point. The cantilever response to a weak parametric modulation is amplified by white noise, resulting in an optimum signal-to-noise ratio at finite noise intensity. This stochastic switching suggests new detection schemes for cantilever-based instrumentation, where the detection of weak signals is mediated by the fluctuating environment. For ultrafloppy, cantilevers with nanometer-scale dimensions operating at room temperature—a new transduction paradigm emerges that is based on probability distributions and mimics nature.

Suggested Citation

  • Warner J. Venstra & Hidde J. R. Westra & Herre S. J. van der Zant, 2013. "Stochastic switching of cantilever motion," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3624
    DOI: 10.1038/ncomms3624
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3624
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3624?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Rongchun & Zhang, Dongxu & Gu, Xudong, 2022. "Reliability analysis of a class of stochastically excited nonlinear Markovian jump systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.