IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3619.html
   My bibliography  Save this article

Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation

Author

Listed:
  • Grégory F. Schneider

    (Kavli Institute of Nanoscience, Delft University of Technology)

  • Qiang Xu

    (Kavli Institute of Nanoscience, Delft University of Technology)

  • Susanne Hage

    (Kavli Institute of Nanoscience, Delft University of Technology)

  • Stephanie Luik

    (Kavli Institute of Nanoscience, Delft University of Technology)

  • Johannes N. H. Spoor

    (Kavli Institute of Nanoscience, Delft University of Technology)

  • Sairam Malladi

    (Kavli Institute of Nanoscience, Delft University of Technology)

  • Henny Zandbergen

    (Kavli Institute of Nanoscience, Delft University of Technology)

  • Cees Dekker

    (Kavli Institute of Nanoscience, Delft University of Technology)

Abstract

Graphene nanopores are potential successors to biological and silicon-based nanopores. For sensing applications, it is however crucial to understand and block the strong nonspecific hydrophobic interactions between DNA and graphene. Here we demonstrate a novel scheme to prevent DNA–graphene interactions, based on a tailored self-assembled monolayer. For bare graphene, we encounter a paradox: whereas contaminated graphene nanopores facilitated DNA translocation well, clean crystalline graphene pores very quickly exhibit clogging of the pore. We attribute this to strong interactions between DNA nucleotides and graphene, yielding sticking and irreversible pore closure. We develop a general strategy to noncovalently tailor the hydrophobic surface of graphene by designing a dedicated self-assembled monolayer of pyrene ethylene glycol, which renders the surface hydrophilic. We demonstrate that this prevents DNA to adsorb on graphene and show that single-stranded DNA can now be detected in graphene nanopores with excellent nanopore durability and reproducibility.

Suggested Citation

  • Grégory F. Schneider & Qiang Xu & Susanne Hage & Stephanie Luik & Johannes N. H. Spoor & Sairam Malladi & Henny Zandbergen & Cees Dekker, 2013. "Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3619
    DOI: 10.1038/ncomms3619
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3619
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianxin Yang & Tianle Pan & Zhenming Xie & Wu Yuan & Ho-Pui Ho, 2024. "In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Arnab Maity & Haihui Pu & Xiaoyu Sui & Jingbo Chang & Kai J. Bottum & Bing Jin & Guihua Zhou & Yale Wang & Ganhua Lu & Junhong Chen, 2023. "Scalable graphene sensor array for real-time toxins monitoring in flowing water," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.