IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3580.html
   My bibliography  Save this article

Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast

Author

Listed:
  • Na Wei

    (University of Illinois at Urbana-Champaign
    Institute for Genomic Biology, University of Illinois at Urbana-Champaign)

  • Josh Quarterman

    (University of Illinois at Urbana-Champaign
    Institute for Genomic Biology, University of Illinois at Urbana-Champaign)

  • Soo Rin Kim

    (University of Illinois at Urbana-Champaign
    Institute for Genomic Biology, University of Illinois at Urbana-Champaign)

  • Jamie H.D. Cate

    (University of California at Berkeley
    Lawrence Berkeley National Laboratory)

  • Yong-Su Jin

    (University of Illinois at Urbana-Champaign
    Institute for Genomic Biology, University of Illinois at Urbana-Champaign)

Abstract

The anticipation for substituting conventional fossil fuels with cellulosic biofuels is growing in the face of increasing demand for energy and rising concerns of greenhouse gas emissions. However, commercial production of cellulosic biofuel has been hampered by inefficient fermentation of xylose and the toxicity of acetic acid, which constitute substantial portions of cellulosic biomass. Here we use a redox balancing strategy to enable efficient xylose fermentation and simultaneous in situ detoxification of cellulosic feedstocks. By combining a nicotinamide adenine dinucleotide (NADH)-consuming acetate consumption pathway and an NADH-producing xylose utilization pathway, engineered yeast converts cellulosic sugars and toxic levels of acetate together into ethanol under anaerobic conditions. The results demonstrate a breakthrough in making efficient use of carbon compounds in cellulosic biomass and present an innovative strategy for metabolic engineering whereby an undesirable redox state can be exploited to drive desirable metabolic reactions, even improving productivity and yield.

Suggested Citation

  • Na Wei & Josh Quarterman & Soo Rin Kim & Jamie H.D. Cate & Yong-Su Jin, 2013. "Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3580
    DOI: 10.1038/ncomms3580
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3580
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3580?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.