IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3579.html
   My bibliography  Save this article

Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss

Author

Listed:
  • Maxim Y. Sheinin

    (Cornell University)

  • Ming Li

    (Cornell University)

  • Mohammad Soltani

    (Cornell University
    Howard Hughes Medical Institute, Cornell University)

  • Karolin Luger

    (Colorado State University)

  • Michelle D. Wang

    (Cornell University
    Howard Hughes Medical Institute, Cornell University)

Abstract

The nucleosome, the fundamental packing unit of chromatin, has a distinct chirality: 147 bp of DNA are wrapped around the core histones in a left-handed, negative superhelix. It has been suggested that this chirality has functional significance, particularly in the context of the cellular processes that generate DNA supercoiling, such as transcription and replication. However, the impact of torsion on nucleosome structure and stability is largely unknown. Here we perform a detailed investigation of single nucleosome behaviour on the high-affinity 601-positioning sequence under tension and torque using the angular optical trapping technique. We find that torque has only a moderate effect on nucleosome unwrapping. In contrast, we observe a dramatic loss of H2A/H2B dimers on nucleosome disruption under positive torque, whereas (H3/H4)2 tetramers are efficiently retained irrespective of torsion. These data indicate that torque could regulate histone exchange during transcription and replication.

Suggested Citation

  • Maxim Y. Sheinin & Ming Li & Mohammad Soltani & Karolin Luger & Michelle D. Wang, 2013. "Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3579
    DOI: 10.1038/ncomms3579
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3579
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3579?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Humberto Sánchez & Zhaowei Liu & Edo Veen & Theo Laar & John F. X. Diffley & Nynke H. Dekker, 2023. "A chromatinized origin reduces the mobility of ORC and MCM through interactions and spatial constraint," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Jaeyoon Lee & Meiling Wu & James T. Inman & Gundeep Singh & Seong ha Park & Joyce H. Lee & Robert M. Fulbright & Yifeng Hong & Joshua Jeong & James M. Berger & Michelle D. Wang, 2023. "Chromatinization modulates topoisomerase II processivity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.