IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3576.html
   My bibliography  Save this article

Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization

Author

Listed:
  • Weixin Zhang

    (Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences)

  • Paul F. Hendrix

    (Odum School of Ecology, University of Georgia)

  • Lauren E. Dame

    (Odum School of Ecology, University of Georgia)

  • Roger A. Burke

    (US Environmental Protection Agency, National Exposure Research Lab, 960 College Station Road)

  • Jianping Wu

    (Institute of Ecology and Environmental Sciences, Nanchang Institute of Technology)

  • Deborah A. Neher

    (63 Carrigan Drive, University of Vermont)

  • Jianxiong Li

    (Guangdong Entomological Institute, Guangdong Academy of Sciences)

  • Yuanhu Shao

    (Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences)

  • Shenglei Fu

    (Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystem, South China Botanical Garden, Chinese Academy of Sciences)

Abstract

A recent review concluded that earthworm presence increases CO2 emissions by 33% but does not affect soil organic carbon stocks. However, the findings are controversial and raise new questions. Here we hypothesize that neither an increase in CO2 emission nor in stabilized carbon would entirely reflect the earthworms’ contribution to net carbon sequestration. We show how two widespread earthworm invaders affect net carbon sequestration through impacts on the balance of carbon mineralization and carbon stabilization. Earthworms accelerate carbon activation and induce unequal amplification of carbon stabilization compared with carbon mineralization, which generates an earthworm-mediated ‘carbon trap’. We introduce the new concept of sequestration quotient to quantify the unequal processes. The patterns of CO2 emission and net carbon sequestration are predictable by comparing sequestration quotient values between treatments with and without earthworms. This study clarifies an ecological mechanism by which earthworms may regulate the terrestrial carbon sink.

Suggested Citation

  • Weixin Zhang & Paul F. Hendrix & Lauren E. Dame & Roger A. Burke & Jianping Wu & Deborah A. Neher & Jianxiong Li & Yuanhu Shao & Shenglei Fu, 2013. "Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3576
    DOI: 10.1038/ncomms3576
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3576
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizabeth M. Bach & Kelly S. Ramirez & Tandra D. Fraser & Diana H. Wall, 2020. "Soil Biodiversity Integrates Solutions for a Sustainable Future," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    2. Chertov, Oleg & Shaw, Cindy & Shashkov, Maxim & Komarov, Alexander & Bykhovets, Sergey & Shanin, Vladimir & Grabarnik, Pavel & Frolov, Pavel & Kalinina, Olga & Priputina, Irina & Zubkova, Elena, 2017. "Romul_Hum model of soil organic matter formation coupled with soil biota activity. III. Parameterisation of earthworm activity," Ecological Modelling, Elsevier, vol. 345(C), pages 140-149.
    3. Onja Ratsiatosika & Malalatiana Razafindrakoto & Tantely Razafimbelo & Michel Rabenarivo & Thierry Becquer & Laetitia Bernard & Jean Trap & Eric Blanchart, 2021. "Earthworm Inoculation Improves Upland Rice Crop Yield and Other Agrosystem Services in Madagascar," Agriculture, MDPI, vol. 11(1), pages 1-14, January.
    4. Madalina Iordache, 2023. "Chemical composition of earthworm casts as a tool in understanding the earthworm contribution to ecosystem sustainability - a review," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 69(6), pages 247-268.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.