IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3550.html
   My bibliography  Save this article

Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio

Author

Listed:
  • Mathew Tantama

    (Harvard Medical School)

  • Juan Ramón Martínez-François

    (Harvard Medical School)

  • Rebecca Mongeon

    (Harvard Medical School)

  • Gary Yellen

    (Harvard Medical School)

Abstract

The ATP:ADP ratio is a critical parameter of cellular energy status that regulates many metabolic activities. Here we report an optimized genetically encoded fluorescent biosensor, PercevalHR, that senses the ATP:ADP ratio. PercevalHR is tuned to the range of intracellular ATP:ADP expected in mammalian cells, and it can be used with one- or two-photon microscopy in live samples. We use PercevalHR to visualize activity-dependent changes in ATP:ADP when neurons are exposed to multiple stimuli, demonstrating that it is a sensitive reporter of physiological changes in energy consumption and production. We also use PercevalHR to visualize intracellular ATP:ADP while simultaneously recording currents from ATP-sensitive potassium (KATP) channels in single cells, showing that PercevalHR enables the study of coordinated variation in ATP:ADP and KATP channel open probability in intact cells. With its ability to monitor changes in cellular energetics within seconds, PercevalHR should be a versatile tool for metabolic research.

Suggested Citation

  • Mathew Tantama & Juan Ramón Martínez-François & Rebecca Mongeon & Gary Yellen, 2013. "Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio," Nature Communications, Nature, vol. 4(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3550
    DOI: 10.1038/ncomms3550
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3550
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blanca Jiménez-Gómez & Patricia Ortega-Sáenz & Lin Gao & Patricia González-Rodríguez & Paula García-Flores & Navdeep Chandel & José López-Barneo, 2023. "Transgenic NADH dehydrogenase restores oxygen regulation of breathing in mitochondrial complex I-deficient mice," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Mailis Liiv & Annika Vaarmann & Dzhamilja Safiulina & Vinay Choubey & Ruby Gupta & Malle Kuum & Lucia Janickova & Zuzana Hodurova & Michal Cagalinec & Akbar Zeb & Miriam A. Hickey & Yi-Long Huang & Na, 2024. "ER calcium depletion as a key driver for impaired ER-to-mitochondria calcium transfer and mitochondrial dysfunction in Wolfram syndrome," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.