IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3503.html
   My bibliography  Save this article

Implementation of stable and complex biological systems through recombinase-assisted genome engineering

Author

Listed:
  • Christine Nicole S. Santos

    (Bio Architecture Lab, Inc.
    Present address: Manus Biosynthesis, Inc., 790 Memorial Drive, Suite 102, Cambridge, Massachusetts 02139, USA)

  • Drew D. Regitsky

    (Bio Architecture Lab, Inc.
    Present address: Calysta Energy Inc., 1140 O'Brien Drive Menlo Park, California 94025, USA)

  • Yasuo Yoshikuni

    (Bio Architecture Lab, Inc.)

Abstract

Evaluating the performance of engineered biological systems with high accuracy and precision is nearly impossible with the use of plasmids due to phenotypic noise generated by genetic instability and natural population dynamics. Minimizing this uncertainty therefore requires a paradigm shift towards engineering at the genomic level. Here, we introduce an advanced design principle for the stable instalment and implementation of complex biological systems through recombinase-assisted genome engineering (RAGE). We apply this concept to the development of a robust strain of Escherichia coli capable of producing ethanol directly from brown macroalgae. RAGE significantly expedites the optimal implementation of a 34 kb heterologous pathway for alginate metabolism based on genetic background, integration locus, copy number and compatibility with two other pathway modules (alginate degradation and ethanol production). The resulting strain achieves a ~40% higher titre than its plasmid-based counterpart and enables substantial improvements in titre (~330%) and productivity (~1,200%) after 50 generations.

Suggested Citation

  • Christine Nicole S. Santos & Drew D. Regitsky & Yasuo Yoshikuni, 2013. "Implementation of stable and complex biological systems through recombinase-assisted genome engineering," Nature Communications, Nature, vol. 4(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3503
    DOI: 10.1038/ncomms3503
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3503
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan Zou & Xiaohong Xiao & Ziran Mo & Yashi Ge & Xing Jiang & Ruolin Huang & Mengxue Li & Zixin Deng & Shi Chen & Lianrong Wang & Sang Yup Lee, 2022. "Systematic strategies for developing phage resistant Escherichia coli strains," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.