IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3482.html
   My bibliography  Save this article

The interplay between apparent viscosity and wettability in nanoconfined water

Author

Listed:
  • Deborah Ortiz-Young

    (School of Physics, Georgia Institute of Technology
    School of Chemistry, Georgia Institute of Technology)

  • Hsiang-Chih Chiu

    (School of Physics, Georgia Institute of Technology
    Present address: Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan)

  • Suenne Kim

    (School of Physics, Georgia Institute of Technology
    Institute of Materials, Ecole Polytechnique Fédérale de Lausanne
    Present address: Department of Applied Physics, Hanyang University, Ansan 426-791, South Korea)

  • Kislon Voïtchovsky

    (Institute of Materials, Ecole Polytechnique Fédérale de Lausanne
    Present address: Department of Physics, University of Durham, Durham DH1 3HP, UK)

  • Elisa Riedo

    (School of Physics, Georgia Institute of Technology)

Abstract

Understanding and manipulating fluids at the nanoscale is a matter of growing scientific and technological interest. Here we show that the viscous shear forces in nanoconfined water can be orders of magnitudes larger than in bulk water if the confining surfaces are hydrophilic, whereas they greatly decrease when the surfaces are increasingly hydrophobic. This decrease of viscous forces is quantitatively explained with a simple model that includes the slip velocity at the water surface interface. The same effect is observed in the energy dissipated by a tip vibrating in water perpendicularly to a surface. Comparison of the experimental data with the model shows that interfacial viscous forces and compressive dissipation in nanoconfined water can decrease up to two orders of magnitude due to slippage. These results offer a new understanding of interfacial fluids, which can be used to control flow at the nanoscale.

Suggested Citation

  • Deborah Ortiz-Young & Hsiang-Chih Chiu & Suenne Kim & Kislon Voïtchovsky & Elisa Riedo, 2013. "The interplay between apparent viscosity and wettability in nanoconfined water," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3482
    DOI: 10.1038/ncomms3482
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3482
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chai, Rukuan & Liu, Yuetian & Xue, Liang & Rui, Zhenhua & Zhao, Ruicheng & Wang, Jingru, 2022. "Formation damage of sandstone geothermal reservoirs: During decreased salinity water injection," Applied Energy, Elsevier, vol. 322(C).
    2. Tian, Weibing & Wu, Keliu & Feng, Dong & Gao, Yanling & Li, Jing & Chen, Zhangxin, 2023. "Dynamic contact angle effect on water-oil imbibition in tight oil reservoirs," Energy, Elsevier, vol. 284(C).
    3. Jun-Xiang Xiang & Ze Liu, 2022. "Observation of enhanced nanoscale creep flow of crystalline metals enabled by controlling surface wettability," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Yuanxi Yu & Chenxing Yang & Matteo Baggioli & Anthony E. Phillips & Alessio Zaccone & Lei Zhang & Ryoichi Kajimoto & Mitsutaka Nakamura & Dehong Yu & Liang Hong, 2022. "The ω3 scaling of the vibrational density of states in quasi-2D nanoconfined solids," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.