IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3383.html
   My bibliography  Save this article

A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries

Author

Listed:
  • Jun Lu

    (Argonne National Laboratory)

  • Yu Lei

    (Argonne National Laboratory)

  • Kah Chun Lau

    (Argonne National Laboratory)

  • Xiangyi Luo

    (Argonne National Laboratory)

  • Peng Du

    (Argonne National Laboratory)

  • Jianguo Wen

    (Electron Microscopy Center, Argonne National Laboratory)

  • Rajeev S. Assary

    (Argonne National Laboratory)

  • Ujjal Das

    (Argonne National Laboratory)

  • Dean J. Miller

    (Electron Microscopy Center, Argonne National Laboratory)

  • Jeffrey W. Elam

    (Argonne National Laboratory)

  • Hassan M. Albishri

    (Faculty of Science, King Abdulaziz University)

  • D Abd El-Hady

    (Faculty of Science, King Abdulaziz University)

  • Yang-Kook Sun

    (Hanyang University)

  • Larry A. Curtiss

    (Argonne National Laboratory)

  • Khalil Amine

    (Argonne National Laboratory
    Faculty of Science, King Abdulaziz University)

Abstract

The lithium-oxygen battery, of much interest because of its very high-energy density, presents many challenges, one of which is a high-charge overpotential that results in large inefficiencies. Here we report a cathode architecture based on nanoscale components that results in a dramatic reduction in charge overpotential to ~0.2 V. The cathode utilizes atomic layer deposition of palladium nanoparticles on a carbon surface with an alumina coating for passivation of carbon defect sites. The low charge potential is enabled by the combination of palladium nanoparticles attached to the carbon cathode surface, a nanocrystalline form of lithium peroxide with grain boundaries, and the alumina coating preventing electrolyte decomposition on carbon. High-resolution transmission electron microscopy provides evidence for the nanocrystalline form of lithium peroxide. The new cathode material architecture provides the basis for future development of lithium-oxygen cathode materials that can be used to improve the efficiency and to extend cycle life.

Suggested Citation

  • Jun Lu & Yu Lei & Kah Chun Lau & Xiangyi Luo & Peng Du & Jianguo Wen & Rajeev S. Assary & Ujjal Das & Dean J. Miller & Jeffrey W. Elam & Hassan M. Albishri & D Abd El-Hady & Yang-Kook Sun & Larry A. C, 2013. "A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries," Nature Communications, Nature, vol. 4(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3383
    DOI: 10.1038/ncomms3383
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3383
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, P. & Jiang, H.R. & Zhu, X.B. & An, L. & Jung, C.Y. & Wu, M.C. & Shi, L. & Shyy, W. & Zhao, T.S., 2017. "Advances and challenges in lithium-air batteries," Applied Energy, Elsevier, vol. 204(C), pages 780-806.
    2. Kah Chun Lau & Dantong Qiu & Xiangyi Luo & Jeffrey Greeley & Larry A. Curtiss & Jun Lu & Khalil Amine, 2015. "Theoretical Exploration of Various Lithium Peroxide Crystal Structures in a Li-Air Battery," Energies, MDPI, vol. 8(1), pages 1-20, January.
    3. Ji Hyeon Lee & Hyun Wook Jung & In Soo Kim & Min Park & Hyung-Seok Kim, 2021. "Electrochemical Evaluation of Surface Modified Free-Standing CNT Electrode for Li–O 2 Battery Cathode," Energies, MDPI, vol. 14(14), pages 1-11, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.