IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3278.html
   My bibliography  Save this article

Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation

Author

Listed:
  • Maochang Liu

    (International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University)

  • Dengwei Jing

    (International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University)

  • Zhaohui Zhou

    (International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University)

  • Liejin Guo

    (International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University)

Abstract

Efficient charge separation is of crucial importance for the improvement of photocatalytic activity for solar hydrogen evolution. Here we report efficient photo-generated charge separation by twin-induced one-dimensional homojunctions with type-II staggered band alignment, using a ternary chalcogenate, i.e. Cd0.5Zn0.5S nanorod as a model material. The quantum efficiency of solar hydrogen evolution over this photocatalyst, without noble metal loading, reaches 62%. Unlike traditional heterojunctions, doping or combination of additional elements are not needed for the formation of this junction, which permits us to tune the band structures of semiconductors to the specific application in a more precise way. Our results highlight the power of forming long-range ordered homojunctions at the nanoscale for photocatalytic and photoelectrochemical applications.

Suggested Citation

  • Maochang Liu & Dengwei Jing & Zhaohui Zhou & Liejin Guo, 2013. "Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation," Nature Communications, Nature, vol. 4(1), pages 1-8, October.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3278
    DOI: 10.1038/ncomms3278
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3278
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3278?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Shenming & Jiang, Jiangang & Ren, Wenyi & Wang, He & Zhang, Rui & Xie, Yingge & Chen, Yubin, 2020. "Construction of ZnO/CdS three-dimensional hierarchical photoelectrode for improved photoelectrochemical performance," Renewable Energy, Elsevier, vol. 153(C), pages 241-248.
    2. Liang Wu & Qian Wang & Tao-Tao Zhuang & Guo-Zhen Zhang & Yi Li & Hui-Hui Li & Feng-Jia Fan & Shu-Hong Yu, 2022. "A library of polytypic copper-based quaternary sulfide nanocrystals enables efficient solar-to-hydrogen conversion," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Guo, Liejin & Chen, Yubin & Su, Jinzhan & Liu, Maochang & Liu, Ya, 2019. "Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow," Energy, Elsevier, vol. 172(C), pages 1079-1086.
    4. Zeng, Zilong & Jing, Dengwei & Guo, Liejin, 2021. "Efficient hydrogen production in a spotlight reactor with plate photocatalyst of TiO2/NiO heterojunction supported on nickel foam," Energy, Elsevier, vol. 228(C).
    5. Zhu, Rongshu & Tian, Fei & Che, Sainan & Cao, Gang & Ouyang, Feng, 2017. "The photocatalytic performance of modified ZnIn2S4 with graphene and La for hydrogen generation under visible light," Renewable Energy, Elsevier, vol. 113(C), pages 1503-1514.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.