IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3253.html
   My bibliography  Save this article

In vivo formation of double-stranded T-DNA molecules by T-strand priming

Author

Listed:
  • Zhuobin Liang

    (Cellular and Developmental Biology, The University of Michigan)

  • Tzvi Tzfira

    (Cellular and Developmental Biology, The University of Michigan
    Ben-Gurion University of the Negev)

Abstract

During plant genetic transformation, Agrobacterium transfers a single-stranded DNA (T-strand) into the host cell. Increasing evidence suggests that double-stranded (ds) T-DNA, converted from T-strands, are potent substrates for integration. Nevertheless, the molecular mechanism governing T-strand conversion to dsT-DNA is unknown. Integrated T-DNA molecules typically exhibit deletions at their 3′ end as compared with their 5′ end. We hypothesize that this may result from asymmetric polymerization of T-DNA’s ends. Here we show that β-glucuronidase (GUS) expression from sense T-strands is more efficient than from antisense T-strands, supporting asymmetric conversion. Co-transfection with two partially complementary, truncated GUS-encoding T-strands results in GUS expression, which suggests functional hybridization of the T-strands via complementary annealing and supports the notion that T-strands can anneal with primers. Indeed, red fluorescent protein (RFP) expression from mutated T-strand can be restored by delivery of synthetic DNA and RNA oligonucleotides with partial wild-type RFP sequence, implying the involvement of plant DNA repair machinery.

Suggested Citation

  • Zhuobin Liang & Tzvi Tzfira, 2013. "In vivo formation of double-stranded T-DNA molecules by T-strand priming," Nature Communications, Nature, vol. 4(1), pages 1-8, October.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3253
    DOI: 10.1038/ncomms3253
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3253
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aron Ferenczi & Yen Peng Chew & Erika Kroll & Charlotte Koppenfels & Andrew Hudson & Attila Molnar, 2021. "Mechanistic and genetic basis of single-strand templated repair at Cas12a-induced DNA breaks in Chlamydomonas reinhardtii," Nature Communications, Nature, vol. 12(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.