IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms3047.html
   My bibliography  Save this article

Solar spectral conversion for improving the photosynthetic activity in algae reactors

Author

Listed:
  • Lothar Wondraczek

    (Otto-Schott-Institute, University of Jena)

  • Miroslaw Batentschuk

    (University of Erlangen)

  • Markus A. Schmidt

    (Institute of Photonic Technology)

  • Rudolf Borchardt

    (University of Erlangen)

  • Simon Scheiner

    (University of Erlangen)

  • Benjamin Seemann

    (University of Erlangen)

  • Peter Schweizer

    (University of Erlangen)

  • Christoph J. Brabec

    (University of Erlangen
    Bavarian Center for Applied Energy Research (ZAE Bayern))

Abstract

Sustainable biomass production is expected to be one of the major supporting pillars for future energy supply, as well as for renewable material provision. Algal beds represent an exciting resource for biomass/biofuel, fine chemicals and CO2 storage. Similar to other solar energy harvesting techniques, the efficiency of algal photosynthesis depends on the spectral overlap between solar irradiation and chloroplast absorption. Here we demonstrate that spectral conversion can be employed to significantly improve biomass growth and oxygen production rate in closed-cycle algae reactors. For this purpose, we adapt a photoluminescent phosphor of the type Ca0.59Sr0.40Eu0.01S, which enables efficient conversion of the green part of the incoming spectrum into red light to better match the Qy peak of chlorophyll b. Integration of a Ca0.59Sr0.40Eu0.01S backlight converter into a flat panel algae reactor filled with Haematococcus pluvialis as a model species results in significantly increased photosynthetic activity and algae reproduction rate.

Suggested Citation

  • Lothar Wondraczek & Miroslaw Batentschuk & Markus A. Schmidt & Rudolf Borchardt & Simon Scheiner & Benjamin Seemann & Peter Schweizer & Christoph J. Brabec, 2013. "Solar spectral conversion for improving the photosynthetic activity in algae reactors," Nature Communications, Nature, vol. 4(1), pages 1-6, October.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3047
    DOI: 10.1038/ncomms3047
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms3047
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms3047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Talebzadeh, Nima & Rostami, Mohsen & O’Brien, Paul G., 2021. "Elliptic paraboloid-based solar spectrum splitters for self-powered photobioreactors," Renewable Energy, Elsevier, vol. 163(C), pages 1773-1785.
    2. Saumya Verma & Raja Chowdhury & Sarat K. Das & Matthew J. Franchetti & Gang Liu, 2021. "Sunlight Intensity, Photosynthetically Active Radiation Modelling and Its Application in Algae-Based Wastewater Treatment and Its Cost Estimation," Sustainability, MDPI, vol. 13(21), pages 1-28, October.
    3. Nima Talebzadeh & Paul G. O’Brien, 2021. "Elliptic Array Luminescent Solar Concentrators for Combined Power Generation and Microalgae Growth," Energies, MDPI, vol. 14(17), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms3047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.