IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2882.html
   My bibliography  Save this article

Direct imaging of single UvrD helicase dynamics on long single-stranded DNA

Author

Listed:
  • Kyung Suk Lee

    (Center for Physics in Living Cells and Institute for Genomic Biology, University of Illinois, Urbana-Champaign)

  • Hamza Balci

    (Kent State University)

  • Haifeng Jia

    (Washington University School of Medicine)

  • Timothy M. Lohman

    (Washington University School of Medicine)

  • Taekjip Ha

    (Center for Physics in Living Cells and Institute for Genomic Biology, University of Illinois, Urbana-Champaign
    Howard Hughes Medical Institute, University of Illinois)

Abstract

Fluorescence imaging of single-protein dynamics on DNA has been largely limited to double-stranded DNA or short single-stranded DNA. We have developed a hybrid approach for observing single proteins moving on laterally stretched kilobase-sized ssDNA. Here we probed the single-stranded DNA translocase activity of Escherichia coli UvrD by single fluorophore tracking, while monitoring DNA unwinding activity with optical tweezers to capture the entire sequence of protein binding, single-stranded DNA translocation and multiple pathways of unwinding initiation. The results directly demonstrate that the UvrD monomer is a highly processive single-stranded DNA translocase that is stopped by a double-stranded DNA, whereas two monomers are required to unwind DNA to a detectable degree. The single-stranded DNA translocation rate does not depend on the force applied and displays a remarkable homogeneity, whereas the unwinding rate shows significant heterogeneity. These findings demonstrate that UvrD assembly state regulates its DNA helicase activity with functional implications for its stepping mechanism, and also reveal a previously unappreciated complexity in the active species during unwinding.

Suggested Citation

  • Kyung Suk Lee & Hamza Balci & Haifeng Jia & Timothy M. Lohman & Taekjip Ha, 2013. "Direct imaging of single UvrD helicase dynamics on long single-stranded DNA," Nature Communications, Nature, vol. 4(1), pages 1-9, October.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2882
    DOI: 10.1038/ncomms2882
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2882
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean P. Carney & Wen Ma & Kevin D. Whitley & Haifeng Jia & Timothy M. Lohman & Zaida Luthey-Schulten & Yann R. Chemla, 2021. "Kinetic and structural mechanism for DNA unwinding by a non-hexameric helicase," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Xiao-Wen Yang & Xiao-Peng Han & Chong Han & James London & Richard Fishel & Jiaquan Liu, 2022. "MutS functions as a clamp loader by positioning MutL on the DNA during mismatch repair," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.