IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2855.html
   My bibliography  Save this article

A reversible long-life lithium–air battery in ambient air

Author

Listed:
  • Tao Zhang

    (Energy Interface Technology Group, Energy Technology Research Institute, Energy Interface Technology Group, National Institute of Advanced Industrial Science and Technology (AIST))

  • Haoshen Zhou

    (Energy Interface Technology Group, Energy Technology Research Institute, Energy Interface Technology Group, National Institute of Advanced Industrial Science and Technology (AIST))

Abstract

Electrolyte degradation, Li dendrite formation and parasitic reactions with H2O and CO2 are all directly correlated to reversibility and cycleability of Li–air batteries when operated in ambient air. Here we replace easily decomposable liquid electrolytes with a solid Li-ion conductor, which acts as both a catholyte and a Li protector. Meanwhile, the conventional solid air cathodes are replaced with a gel cathode, which contacts directly with the solid catholyte to form a closed and sustainable gel/solid interface. The proposed Li–air cell has sustained repeated cycling in ambient air for 100 cycles (~78 days), with discharge capacity of 2,000 mAh g−1. The recharging is based largely on the reversible reactions of Li2CO3 product, originating from the initial discharge product of Li2O2 instead of electrolyte degradation. Our results demonstrate that a reversible long-life Li–air battery is attainable by coordinated approaches towards the focal issues of electrolytes and Li metal.

Suggested Citation

  • Tao Zhang & Haoshen Zhou, 2013. "A reversible long-life lithium–air battery in ambient air," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2855
    DOI: 10.1038/ncomms2855
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2855
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2855?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heetaek Park & Minseok Kang & Donghun Lee & Jaehyun Park & Seok Ju Kang & Byoungwoo Kang, 2024. "Activating reversible carbonate reactions in Nasicon solid electrolyte-based Na-air battery via in-situ formed catholyte," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.