IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2763.html
   My bibliography  Save this article

Dual role of myosin II during Drosophila imaginal disc metamorphosis

Author

Listed:
  • Silvia Aldaz

    (MRC Laboratory of Molecular Biology, Francis Crick Avenue)

  • Luis M. Escudero

    (MRC Laboratory of Molecular Biology, Francis Crick Avenue
    Present address: Instituto Biomedicina Sevilla (IBiS), Universidad de Sevilla/CSIC/Hospital Virgen del Rocío. 41013 Seville, Spain)

  • Matthew Freeman

    (MRC Laboratory of Molecular Biology, Francis Crick Avenue
    Present address: Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE)

Abstract

The motor protein non-muscle myosin II is a major driver of the movements that sculpt three-dimensional organs from two-dimensional epithelia. The machinery of morphogenesis is well established but the logic of its control remains unclear in complex organs. Here we use live imaging and ex vivo culture to report a dual role of myosin II in regulating the development of the Drosophila wing. First, myosin II drives the contraction of a ring of cells that surround the squamous peripodial epithelium, providing the force to fold the whole disc through about 90°. Second, myosin II is needed to allow the squamous cells to expand and then retract at the end of eversion. The combination of genetics and live imaging allows us to describe and understand the tissue dynamics, and the logic of force generation needed to transform a relatively simple imaginal disc into a more complex and three-dimensional adult wing.

Suggested Citation

  • Silvia Aldaz & Luis M. Escudero & Matthew Freeman, 2013. "Dual role of myosin II during Drosophila imaginal disc metamorphosis," Nature Communications, Nature, vol. 4(1), pages 1-10, June.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2763
    DOI: 10.1038/ncomms2763
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2763
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2763?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nilay Kumar & Jennifer Rangel Ambriz & Kevin Tsai & Mayesha Sahir Mim & Marycruz Flores-Flores & Weitao Chen & Jeremiah J. Zartman & Mark Alber, 2024. "Balancing competing effects of tissue growth and cytoskeletal regulation during Drosophila wing disc development," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    2. Stefan Harmansa & Alexander Erlich & Christophe Eloy & Giuseppe Zurlo & Thomas Lecuit, 2023. "Growth anisotropy of the extracellular matrix shapes a developing organ," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.