IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2746.html
   My bibliography  Save this article

Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system

Author

Listed:
  • Wouter Sempels

    (KU Leuven, University of Leuven)

  • Raf De Dier

    (KU Leuven, University of Leuven)

  • Hideaki Mizuno

    (KU Leuven, University of Leuven)

  • Johan Hofkens

    (KU Leuven, University of Leuven)

  • Jan Vermant

    (KU Leuven, University of Leuven)

Abstract

The deposition of material at the edge of evaporating droplets, known as the ‘coffee ring effect’, is caused by a radially outward capillary flow. This phenomenon is common to a wide array of systems including colloidal and bacterial systems. The role of surfactants in counteracting these coffee ring depositions is related to the occurrence of local vortices known as Marangoni eddies. Here we show that these swirling flows are universal, and not only lead to a uniform deposition of colloids but also occur in living bacterial systems. Experiments on Pseudomonas aeruginosa suggest that the auto-production of biosurfactants has an essential role in creating a homogeneous deposition of the bacteria upon drying. Moreover, at biologically relevant conditions, intricate time-dependent flows are observed in addition to the vortex regime, which are also effective in reversing the coffee ring effect at even lower surfactant concentrations.

Suggested Citation

  • Wouter Sempels & Raf De Dier & Hideaki Mizuno & Johan Hofkens & Jan Vermant, 2013. "Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2746
    DOI: 10.1038/ncomms2746
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2746
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2746?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossein Zargartalebi & S. Hossein Hejazi & Amir Sanati-Nezhad, 2022. "Self-assembly of highly ordered micro- and nanoparticle deposits," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Marcel Rey & Johannes Walter & Johannes Harrer & Carmen Morcillo Perez & Salvatore Chiera & Sharanya Nair & Maret Ickler & Alesa Fuchs & Mark Michaud & Maximilian J. Uttinger & Andrew B. Schofield & J, 2022. "Versatile strategy for homogeneous drying patterns of dispersed particles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.