IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2666.html
   My bibliography  Save this article

Self-shaping composites with programmable bioinspired microstructures

Author

Listed:
  • Randall M. Erb

    (Complex Materials, ETH Zurich
    Northeastern University)

  • Jonathan S. Sander

    (Complex Materials, ETH Zurich)

  • Roman Grisch

    (Complex Materials, ETH Zurich)

  • André R. Studart

    (Complex Materials, ETH Zurich)

Abstract

Shape change is a prevalent function apparent in a diverse set of natural structures, including seed dispersal units, climbing plants and carnivorous plants. Many of these natural materials change shape by using cellulose microfibrils at specific orientations to anisotropically restrict the swelling/shrinkage of their organic matrices upon external stimuli. This is in contrast to the material-specific mechanisms found in synthetic shape-memory systems. Here we propose a robust and universal method to replicate this unusual shape-changing mechanism of natural systems in artificial bioinspired composites. The technique is based upon the remote control of the orientation of reinforcing inorganic particles within the composite using a weak external magnetic field. Combining this reinforcement orientational control with swellable/shrinkable polymer matrices enables the creation of composites whose shape change can be programmed into the material’s microstructure rather than externally imposed. Such bioinspired approach can generate composites with unusual reversibility, twisting effects and site-specific programmable shape changes.

Suggested Citation

  • Randall M. Erb & Jonathan S. Sander & Roman Grisch & André R. Studart, 2013. "Self-shaping composites with programmable bioinspired microstructures," Nature Communications, Nature, vol. 4(1), pages 1-8, June.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2666
    DOI: 10.1038/ncomms2666
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2666
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2666?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingrui Wang & Xiaoyong Tian & Daokang Zhang & Yanli Zhou & Wanquan Yan & Dichen Li, 2023. "Programmable spatial deformation by controllable off-center freestanding 4D printing of continuous fiber reinforced liquid crystal elastomer composites," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Wei Du & Feng Gao & Peng Cui & Zhiwu Yu & Wei Tong & Jihao Wang & Zhuang Ren & Chuang Song & Jiaying Xu & Haifeng Ma & Liyun Dang & Di Zhang & Qingyou Lu & Jun Jiang & Junfeng Wang & Li Pi & Zhigao Sh, 2023. "Twisting, untwisting, and retwisting of elastic Co-based nanohelices," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Artem Holstov & Graham Farmer & Ben Bridgens, 2017. "Sustainable Materialisation of Responsive Architecture," Sustainability, MDPI, vol. 9(3), pages 1-20, March.
    4. Emily Birch & Ben Bridgens & Meng Zhang & Martyn Dade-Robertson, 2021. "Bacterial Spore-Based Hygromorphs: A Novel Active Material with Potential for Architectural Applications," Sustainability, MDPI, vol. 13(7), pages 1-19, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.