IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2501.html
   My bibliography  Save this article

Disease mutations in the ryanodine receptor N-terminal region couple to a mobile intersubunit interface

Author

Listed:
  • Lynn Kimlicka

    (Life Sciences Institute, University of British Columbia)

  • Kelvin Lau

    (Life Sciences Institute, University of British Columbia)

  • Ching-Chieh Tung

    (Life Sciences Institute, University of British Columbia)

  • Filip Van Petegem

    (Life Sciences Institute, University of British Columbia)

Abstract

Ryanodine receptors are large channels that release Ca2+ from the endoplasmic and sarcoplasmic reticulum. Hundreds of RyR mutations can cause cardiac and skeletal muscle disorders, yet detailed mechanisms explaining their effects have been lacking. Here we compare pseudo-atomic models and propose that channel opening coincides with widening of a cytoplasmic vestibule formed by the N-terminal region, thus altering an interface targeted by 20 disease mutations. We solve crystal structures of several disease mutants that affect intrasubunit domain–domain interfaces. Mutations affecting intrasubunit ionic pairs alter relative domain orientations, and thus couple to surrounding interfaces. Buried disease mutations cause structural changes that also connect to the intersubunit contact area. These results suggest that the intersubunit contact region between N-terminal domains is a prime target for disease mutations, direct or indirect, and we present a model whereby ryanodine receptors and inositol-1,4,5-trisphosphate receptors are activated by altering domain arrangements in the N-terminal region.

Suggested Citation

  • Lynn Kimlicka & Kelvin Lau & Ching-Chieh Tung & Filip Van Petegem, 2013. "Disease mutations in the ryanodine receptor N-terminal region couple to a mobile intersubunit interface," Nature Communications, Nature, vol. 4(1), pages 1-10, June.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2501
    DOI: 10.1038/ncomms2501
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2501
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Seby Chen & Maricela Garcia-Castañeda & Maria Charalambous & Daniela Rossi & Vincenzo Sorrentino & Filip Van Petegem, 2024. "Cryo-EM investigation of ryanodine receptor type 3," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.