IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2459.html
   My bibliography  Save this article

Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water

Author

Listed:
  • Thomas D. Kühne

    (Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany.
    Center for Computational Sciences, Johannes Gutenberg University Mainz)

  • Rustam Z. Khaliullin

    (Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany.)

Abstract

Interpretation of the X-ray spectra of water as evidence for its asymmetric structure has challenged the conventional symmetric nearly tetrahedral model and initiated an intense debate about the order and symmetry of the hydrogen-bond network in water. Here we present new insights into the nature of local interactions in water obtained using a novel energy-decomposition method. Our simulations reveal that although a water molecule forms, on average, two strong donor and two strong acceptor bonds, there is a significant asymmetry in the energy of these contacts. We demonstrate that this asymmetry is a result of small instantaneous distortions of hydrogen bonds, which appear as fluctuations on a time scale of hundreds of femtoseconds around the average symmetric structure. Furthermore, we show that the distinct features of the X-ray absorption spectra originate from molecules with high instantaneous asymmetry. Our findings have important implications as they help reconcile the symmetric and asymmetric views on the structure of water.

Suggested Citation

  • Thomas D. Kühne & Rustam Z. Khaliullin, 2013. "Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water," Nature Communications, Nature, vol. 4(1), pages 1-7, June.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2459
    DOI: 10.1038/ncomms2459
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2459
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2459?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Xin & Cheng, Ke & Jia, Guo-zhu, 2019. "The molecular dynamics simulation of hydrogen bonding in supercritical water," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 365-375.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.