IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2422.html
   My bibliography  Save this article

The ghost of nestedness in ecological networks

Author

Listed:
  • Phillip P. A. Staniczenko

    (University of Chicago)

  • Jason C. Kopp

    (University of Chicago)

  • Stefano Allesina

    (University of Chicago
    Computation Institute, University of Chicago)

Abstract

Ecologists are fascinated by the prevalence of nestedness in biogeographic and community data, where it is thought to promote biodiversity in mutualistic systems. Traditionally, nestedness has been treated in a binary sense: species and their interactions are either present or absent, neglecting information on abundances and interaction frequencies. Extending nestedness to quantitative data facilitates the study of species preferences, and we propose a new detection method that follows from a basic property of bipartite networks: large dominant eigenvalues are associated with highly nested configurations. We show that complex ecological networks are binary nested, but quantitative preferences are non-nested, indicating limited consumer overlap of favoured resources. The spectral graph approach provides a formal link to local dynamical stability analysis, where we demonstrate that nested mutualistic structures are minimally stable. We conclude that, within the binary constraint of interaction plausibility, species preferences are partitioned to avoid competition, thereby benefiting system-wide resource allocation.

Suggested Citation

  • Phillip P. A. Staniczenko & Jason C. Kopp & Stefano Allesina, 2013. "The ghost of nestedness in ecological networks," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2422
    DOI: 10.1038/ncomms2422
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2422
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tad Dallas & Andrew W Park & John M Drake, 2017. "Predicting cryptic links in host-parasite networks," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-15, May.
    2. Vincent Miele & Catherine Matias & Stéphane Robin & Stéphane Dray, 2019. "Nine quick tips for analyzing network data," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-10, December.
    3. Mika J. Straka & Guido Caldarelli & Tiziano Squartini & Fabio Saracco, 2017. "From Ecology to Finance (and Back?): Recent Advancements in the Analysis of Bipartite Networks," Papers 1710.10143, arXiv.org.
    4. Michel Alexandre & Felipe Jordão Xavier & Thiago Christiano Silva & Francisco A. Rodrigues, 2022. "Nestedness in the Brazilian Financial System," Working Papers Series 566, Central Bank of Brazil, Research Department.
    5. Matthew J Michalska-Smith & Stefano Allesina, 2019. "Telling ecological networks apart by their structure: A computational challenge," PLOS Computational Biology, Public Library of Science, vol. 15(6), pages 1-13, June.
    6. Luiz G. A. Alves & Giuseppe Mangioni & Isabella Cingolani & Francisco A. Rodrigues & Pietro Panzarasa & Yamir Moreno, 2018. "The nested structural organization of the worldwide trade multi-layer network," Papers 1803.02872, arXiv.org, revised Sep 2019.
    7. Fabio Saracco & Riccardo Di Clemente & Andrea Gabrielli & Tiziano Squartini, 2015. "Detecting early signs of the 2007-2008 crisis in the world trade," Papers 1508.03533, arXiv.org, revised Jul 2016.
    8. Geut Galai & Xie He & Barak Rotblat & Shai Pilosof, 2023. "Ecological network analysis reveals cancer-dependent chaperone-client interaction structure and robustness," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.