IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms2246.html
   My bibliography  Save this article

Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme

Author

Listed:
  • Nobuhiko Tokuriki

    (Michael Smith Laboratories, University of British Columbia
    University of Cambridge
    Weizmann Institute of Science)

  • Colin J. Jackson

    (Research School of Chemistry, Australian National University
    Institut de Biologie Structurale)

  • Livnat Afriat-Jurnou

    (Weizmann Institute of Science)

  • Kirsten T. Wyganowski

    (Michael Smith Laboratories, University of British Columbia)

  • Renmei Tang

    (Michael Smith Laboratories, University of British Columbia)

  • Dan S. Tawfik

    (Weizmann Institute of Science)

Abstract

Optimization processes, such as evolution, are constrained by diminishing returns—the closer the optimum, the smaller the benefit per mutation, and by tradeoffs—improvement of one property at the cost of others. However, the magnitude and molecular basis of these parameters, and their effect on evolutionary transitions, remain unknown. Here we pursue a complete functional transition of an enzyme with a >109-fold change in the enzyme’s selectivity using laboratory evolution. We observed strong diminishing returns, with the initial mutations conferring >25-fold higher improvements than later ones, and asymmetric tradeoffs whereby the gain/loss ratio of the new/old activity decreased 400-fold from the beginning of the trajectory to its end. We describe the molecular basis for these phenomena and suggest they have an important role in shaping natural proteins. These findings also suggest that the catalytic efficiency and specificity of many natural enzymes may be far from their optimum.

Suggested Citation

  • Nobuhiko Tokuriki & Colin J. Jackson & Livnat Afriat-Jurnou & Kirsten T. Wyganowski & Renmei Tang & Dan S. Tawfik, 2012. "Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme," Nature Communications, Nature, vol. 3(1), pages 1-10, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2246
    DOI: 10.1038/ncomms2246
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2246
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Kozome & Adnan Sljoka & Paola Laurino, 2024. "Remote loop evolution reveals a complex biological function for chitinase enzymes beyond the active site," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Karol Buda & Charlotte M. Miton & Nobuhiko Tokuriki, 2023. "Pervasive epistasis exposes intramolecular networks in adaptive enzyme evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Enrico Orsi & Lennart Schada von Borzyskowski & Stephan Noack & Pablo I. Nikel & Steffen N. Lindner, 2024. "Automated in vivo enzyme engineering accelerates biocatalyst optimization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.