IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms2237.html
   My bibliography  Save this article

Variability in the quality of visual working memory

Author

Listed:
  • Daryl Fougnie

    (Harvard University, William James Hall, 33 Kirkland Street)

  • Jordan W. Suchow

    (Harvard University, William James Hall, 33 Kirkland Street)

  • George A. Alvarez

    (Harvard University, William James Hall, 33 Kirkland Street)

Abstract

Working memory is a mental storage system that keeps task-relevant information accessible for a brief span of time, and it is strikingly limited. Its limits differ substantially across people but are assumed to be fixed for a given person. Here we show that there is substantial variability in the quality of working memory representations within an individual. This variability can be explained neither by fluctuations in attention or arousal over time, nor by uneven distribution of a limited mental commodity. Variability of this sort is inconsistent with the assumptions of the standard cognitive models of working memory capacity, including both slot- and resource-based models, and so we propose a new framework for understanding the limitations of working memory: a stochastic process of degradation that plays out independently across memories.

Suggested Citation

  • Daryl Fougnie & Jordan W. Suchow & George A. Alvarez, 2012. "Variability in the quality of visual working memory," Nature Communications, Nature, vol. 3(1), pages 1-8, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2237
    DOI: 10.1038/ncomms2237
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2237
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loic Matthey & Paul M Bays & Peter Dayan, 2015. "A Probabilistic Palimpsest Model of Visual Short-term Memory," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-34, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.