IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms2116.html
   My bibliography  Save this article

A universal critical density underlying the physics of electrons at the LaAlO3/SrTiO3 interface

Author

Listed:
  • Arjun Joshua

    (Weizmann Institute of Science)

  • S. Pecker

    (Weizmann Institute of Science)

  • J. Ruhman

    (Weizmann Institute of Science)

  • E. Altman

    (Weizmann Institute of Science)

  • S. Ilani

    (Weizmann Institute of Science)

Abstract

The two-dimensional electron system at the interface between the insulating oxides LaAlO3 and SrTiO3 exhibits ferromagnetism, superconductivity and a range of unique magnetotransport properties. An open experimental challenge is to identify, out of the multitudinous energy bands predicted to exist at the interface, the key ingredients underlying its emergent transport phenomena. Here we show, using magnetotransport measurements, that a universal Lifshitz transition between d orbitals of different symmetries lies at the core of the observed phenomena. We find that LaAlO3/SrTiO3 systems generically switch from one- to two-carrier transport at a universal carrier density, which is independent of the LaAlO3 thickness and electron mobility. Interestingly, the maximum superconducting critical temperature occurs also at the Lifshitz density, indicating a possible connection between the two phenomena. A simple band model, allowing for spin-orbit coupling at the atomic level, connects the observed transition to a variety of previously reported properties. Our results demonstrate that the fascinating behaviour observed so far in these oxides follows from a small but fundamental set of bands.

Suggested Citation

  • Arjun Joshua & S. Pecker & J. Ruhman & E. Altman & S. Ilani, 2012. "A universal critical density underlying the physics of electrons at the LaAlO3/SrTiO3 interface," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2116
    DOI: 10.1038/ncomms2116
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2116
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rikizo Yano & Shota Nagasaka & Naoki Matsubara & Kazushige Saigusa & Tsuyoshi Tanda & Seiichiro Ito & Ai Yamakage & Yoshihiko Okamoto & Koshi Takenaka & Satoshi Kashiwaya, 2023. "Evidence of unconventional superconductivity on the surface of the nodal semimetal CaAg1−xPdxP," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    2. Aditi Nethwewala & Hyungwoo Lee & Jianan Li & Megan Briggeman & Yun-Yi Pai & Kitae Eom & Chang-Beom Eom & Patrick Irvin & Jeremy Levy, 2023. "Electron pairing and nematicity in LaAlO3/SrTiO3 nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.