IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms2098.html
   My bibliography  Save this article

Food web expansion and contraction in response to changing environmental conditions

Author

Listed:
  • Tyler D. Tunney

    (University of Guelph)

  • Kevin S. McCann

    (University of Guelph)

  • Nigel P. Lester

    (Aquatic Research and Development Section, Ontario Ministry of Natural Resources)

  • Brian J. Shuter

    (Aquatic Research and Development Section, Ontario Ministry of Natural Resources
    University of Toronto)

Abstract

Macroscopic ecosystem properties, such as major material pathways and community biomass structure, underlie the ecosystem services on which humans rely. While ecologists have long sought to identify the determinants of the trophic height of food webs (food chain length), it is somewhat surprising how little research effort is invested in understanding changes among other food web properties across environmental conditions. Here we theoretically and empirically show how a suite of fundamental macroscopic food web structures respond, in concert, to changes in habitat accessibility using post-glacial lakes as model ecosystems. We argue that as resource accessibility increases in coupled food webs, food chain length contracts (that is, reduced predator trophic position), habitat coupling expands (that is, increasingly coupled macrohabitats) and biomass pyramid structure becomes more top heavy. Our results further support an emerging theoretical view of flexible food webs that provides a foundation for generally understanding ecosystem responses to changing environmental conditions.

Suggested Citation

  • Tyler D. Tunney & Kevin S. McCann & Nigel P. Lester & Brian J. Shuter, 2012. "Food web expansion and contraction in response to changing environmental conditions," Nature Communications, Nature, vol. 3(1), pages 1-9, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2098
    DOI: 10.1038/ncomms2098
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2098
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shuran Cindy & Liu, Xueqin & Liu, Yong & Wang, Hongzhu, 2020. "Benthic-pelagic coupling in lake energetic food webs," Ecological Modelling, Elsevier, vol. 417(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.