IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms2015.html
   My bibliography  Save this article

The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation

Author

Listed:
  • Francisco Ferrezuelo

    (IRBLleida-UdL)

  • Neus Colomina

    (IRBLleida-UdL)

  • Alida Palmisano

    (The Microsoft Research-University of Trento Centre for Computational and Systems Biology
    Virginia Polytechnic Institute and State University)

  • Eloi Garí

    (IRBLleida-UdL)

  • Carme Gallego

    (Institut de Biologia Molecular de Barcelona, CSIC)

  • Attila Csikász-Nagy

    (The Microsoft Research-University of Trento Centre for Computational and Systems Biology)

  • Martí Aldea

    (Institut de Biologia Molecular de Barcelona, CSIC)

Abstract

Budding yeast cells are assumed to trigger Start and enter the cell cycle only after they attain a critical size set by external conditions. However, arguing against deterministic models of cell size control, cell volume at Start displays great individual variability even under constant conditions. Here we show that cell size at Start is robustly set at a single-cell level by the volume growth rate in G1, which explains the observed variability. We find that this growth-rate-dependent sizer is intimately hardwired into the Start network and the Ydj1 chaperone is key for setting cell size as a function of the individual growth rate. Mathematical modelling and experimental data indicate that a growth-rate-dependent sizer is sufficient to ensure size homeostasis and, as a remarkable advantage over a rigid sizer mechanism, it reduces noise in G1 length and provides an immediate solution for size adaptation to external conditions at a population level.

Suggested Citation

  • Francisco Ferrezuelo & Neus Colomina & Alida Palmisano & Eloi Garí & Carme Gallego & Attila Csikász-Nagy & Martí Aldea, 2012. "The critical size is set at a single-cell level by growth rate to attain homeostasis and adaptation," Nature Communications, Nature, vol. 3(1), pages 1-11, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2015
    DOI: 10.1038/ncomms2015
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2015
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas P. Cuny & K. Tanuj Sapra & David Martinez-Martin & Gotthold Fläschner & Jonathan D. Adams & Sascha Martin & Christoph Gerber & Fabian Rudolf & Daniel J. Müller, 2022. "High-resolution mass measurements of single budding yeast reveal linear growth segments," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. G. Yahya & P. Menges & P. S. Amponsah & D. A. Ngandiri & D. Schulz & A. Wallek & N. Kulak & M. Mann & P. Cramer & V. Savage & M. Räschle & Z. Storchova, 2022. "Sublinear scaling of the cellular proteome with ploidy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.