IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms2005.html
   My bibliography  Save this article

TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export

Author

Listed:
  • Nicolas Viphakone

    (The University of Sheffield, Firth Court, Western Bank)

  • Guillaume M. Hautbergue

    (The University of Sheffield, Firth Court, Western Bank)

  • Matthew Walsh

    (The University of Sheffield, Firth Court, Western Bank)

  • Chung-Te Chang

    (The University of Sheffield, Firth Court, Western Bank)

  • Arthur Holland

    (The University of Sheffield, Firth Court, Western Bank)

  • Eric G. Folco

    (Harvard Medical School)

  • Robin Reed

    (Harvard Medical School)

  • Stuart A. Wilson

    (The University of Sheffield, Firth Court, Western Bank)

Abstract

The metazoan TREX complex is recruited to mRNA during nuclear RNA processing and functions in exporting mRNA to the cytoplasm. Nxf1 is an mRNA export receptor, which binds processed mRNA and transports it through the nuclear pore complex. At present, the relationship between TREX and Nxf1 is not understood. Here we show that Nxf1 uses an intramolecular interaction to inhibit its own RNA-binding activity. When the TREX subunits Aly and Thoc5 make contact with Nxf1, Nxf1 is driven into an open conformation, exposing its RNA-binding domain, allowing RNA binding. Moreover, the combined knockdown of Aly and Thoc5 markedly reduces the amount of Nxf1 bound to mRNA in vivo and also causes a severe mRNA export block. Together, our data indicate that TREX provides a license for mRNA export by driving Nxf1 into a conformation capable of binding mRNA.

Suggested Citation

  • Nicolas Viphakone & Guillaume M. Hautbergue & Matthew Walsh & Chung-Te Chang & Arthur Holland & Eric G. Folco & Robin Reed & Stuart A. Wilson, 2012. "TREX exposes the RNA-binding domain of Nxf1 to enable mRNA export," Nature Communications, Nature, vol. 3(1), pages 1-14, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2005
    DOI: 10.1038/ncomms2005
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2005
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ken-ichi Fujita & Misa Ito & Midori Irie & Kotaro Harada & Naoko Fujiwara & Yuya Ikeda & Hanae Yoshioka & Tomohiro Yamazaki & Masaki Kojima & Bunzo Mikami & Akila Mayeda & Seiji Masuda, 2024. "Structural differences between the closely related RNA helicases, UAP56 and URH49, fashion distinct functional apo-complexes," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Liang Chen & Yucong Wang & Jiamei Lin & Zhenxing Song & Qinwei Wang & Wenfang Zhao & Yan Wang & Xiaoyu Xiu & Yuqi Deng & Xiuzhi Li & Qiqi Li & Xiaolin Wang & Jingxin Li & Xu Liu & Kunpeng Liu & Jincon, 2022. "Exportin 4 depletion leads to nuclear accumulation of a subset of circular RNAs," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Simeon R. Mihaylov & Lydia M. Castelli & Ya-Hui Lin & Aytac Gül & Nikita Soni & Christopher Hastings & Helen R. Flynn & Oana Păun & Mark J. Dickman & Ambrosius P. Snijders & Robert Goldstone & Oliver, 2023. "The master energy homeostasis regulator PGC-1α exhibits an mRNA nuclear export function," Nature Communications, Nature, vol. 14(1), pages 1-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms2005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.