IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms1742.html
   My bibliography  Save this article

Infrared light excites cells by changing their electrical capacitance

Author

Listed:
  • Mikhail G. Shapiro

    (University of Chicago
    Present address: Miller Research Institute, University of California at Berkeley, 2536 Channing Way, California 94720, USA.)

  • Kazuaki Homma

    (Northwestern University)

  • Sebastian Villarreal

    (University of Chicago)

  • Claus-Peter Richter

    (Northwestern University
    Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, USA.
    The Hugh Knowles Center, Northwestern University)

  • Francisco Bezanilla

    (University of Chicago)

Abstract

Optical stimulation has enabled important advances in the study of brain function and other biological processes, and holds promise for medical applications ranging from hearing restoration to cardiac pace making. In particular, pulsed laser stimulation using infrared wavelengths >1.5 μm has therapeutic potential based on its ability to directly stimulate nerves and muscles without any genetic or chemical pre-treatment. However, the mechanism of infrared stimulation has been a mystery, hindering its path to the clinic. Here we show that infrared light excites cells through a novel, highly general electrostatic mechanism. Infrared pulses are absorbed by water, producing a rapid local increase in temperature. This heating reversibly alters the electrical capacitance of the plasma membrane, depolarizing the target cell. This mechanism is fully reversible and requires only the most basic properties of cell membranes. Our findings underscore the generality of pulsed infrared stimulation and its medical potential.

Suggested Citation

  • Mikhail G. Shapiro & Kazuaki Homma & Sebastian Villarreal & Claus-Peter Richter & Francisco Bezanilla, 2012. "Infrared light excites cells by changing their electrical capacitance," Nature Communications, Nature, vol. 3(1), pages 1-11, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1742
    DOI: 10.1038/ncomms1742
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1742
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamal R Dhakal & Ling Gu & Shivaranjani Shivalingaiah & Torry S Dennis & Samara A Morris-Bobzean & Ting Li & Linda I Perrotti & Samarendra K Mohanty, 2014. "Non-Scanning Fiber-Optic Near-Infrared Beam Led to Two-Photon Optogenetic Stimulation In-Vivo," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-12, November.
    2. Carlos A. Z. Bassetto & Juergen Pfeffermann & Rohit Yadav & Simon Strassgschwandtner & Toma Glasnov & Francisco Bezanilla & Peter Pohl, 2024. "Photolipid excitation triggers depolarizing optocapacitive currents and action potentials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Mertcan Han & Erdost Yildiz & Ugur Bozuyuk & Asli Aydin & Yan Yu & Aarushi Bhargava & Selcan Karaz & Metin Sitti, 2024. "Janus microparticles-based targeted and spatially-controlled piezoelectric neural stimulation via low-intensity focused ultrasound," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.