IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v3y2012i1d10.1038_ncomms1635.html
   My bibliography  Save this article

Evidence for the late formation of hydrous asteroids from young meteoritic carbonates

Author

Listed:
  • Wataru Fujiya

    (Graduate School of Science, the University of Tokyo)

  • Naoji Sugiura

    (Graduate School of Science, the University of Tokyo)

  • Hideyuki Hotta

    (Graduate School of Science, the University of Tokyo)

  • Koji Ichimura

    (Graduate School of Science, the University of Tokyo)

  • Yuji Sano

    (Atmosphere and Ocean Research Institute, the University of Tokyo)

Abstract

The accretion of small bodies in the Solar System is a fundamental process that was followed by planet formation. Chronological information of meteorites can constrain when asteroids formed. Secondary carbonates show extremely old 53Mn–53Cr radiometric ages, indicating that some hydrous asteroids accreted rapidly. However, previous studies have failed to define accurate Mn/Cr ratios; hence, these old ages could be artefacts. Here we develop a new method for accurate Mn/Cr determination, and report a reliable age of 4,563.4+0.4/−0.5 million years ago for carbonates in carbonaceous chondrites. We find that these carbonates have identical ages, which are younger than those previously estimated. This result suggests the late onset of aqueous activities in the Solar System. The young carbonate age cannot be explained if the parent asteroid accreted within 3 million years after the birth of the Solar System. Thus, we conclude that hydrous asteroids accreted later than differentiated and metamorphosed asteroids.

Suggested Citation

  • Wataru Fujiya & Naoji Sugiura & Hideyuki Hotta & Koji Ichimura & Yuji Sano, 2012. "Evidence for the late formation of hydrous asteroids from young meteoritic carbonates," Nature Communications, Nature, vol. 3(1), pages 1-6, January.
  • Handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1635
    DOI: 10.1038/ncomms1635
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1635
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Toshihiro Yoshimura & Daisuke Araoka & Hiroshi Naraoka & Saburo Sakai & Nanako O. Ogawa & Hisayoshi Yurimoto & Mayu Morita & Morihiko Onose & Tetsuya Yokoyama & Martin Bizzarro & Satoru Tanaka & Naohi, 2024. "Breunnerite grain and magnesium isotope chemistry reveal cation partitioning during aqueous alteration of asteroid Ryugu," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:3:y:2012:i:1:d:10.1038_ncomms1635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.