IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v2y2011i1d10.1038_ncomms1464.html
   My bibliography  Save this article

Strong plasmonic enhancement of photovoltage in graphene

Author

Listed:
  • T.J. Echtermeyer

    (University of Cambridge)

  • L. Britnell

    (School of Physics and Astronomy, University of Manchester)

  • P.K. Jasnos

    (University of Cambridge)

  • A. Lombardo

    (University of Cambridge)

  • R.V. Gorbachev

    (Centre for Mesoscience and Nanotechnology, University of Manchester)

  • A.N. Grigorenko

    (School of Physics and Astronomy, University of Manchester)

  • A.K. Geim

    (Centre for Mesoscience and Nanotechnology, University of Manchester)

  • A.C. Ferrari

    (University of Cambridge)

  • K.S. Novoselov

    (School of Physics and Astronomy, University of Manchester)

Abstract

From the wide spectrum of potential applications of graphene, ranging from transistors and chemical sensors to nanoelectromechanical devices and composites, the field of photonics and optoelectronics is believed to be one of the most promising. Indeed, graphene's suitability for high-speed photodetection was demonstrated in an optical communication link operating at 10 Gbit s−1. However, the low responsivity of graphene-based photodetectors compared with traditional III–V-based ones is a potential drawback. Here we show that, by combining graphene with plasmonic nanostructures, the efficiency of graphene-based photodetectors can be increased by up to 20 times, because of efficient field concentration in the area of a p–n junction. Additionally, wavelength and polarization selectivity can be achieved by employing nanostructures of different geometries.

Suggested Citation

  • T.J. Echtermeyer & L. Britnell & P.K. Jasnos & A. Lombardo & R.V. Gorbachev & A.N. Grigorenko & A.K. Geim & A.C. Ferrari & K.S. Novoselov, 2011. "Strong plasmonic enhancement of photovoltage in graphene," Nature Communications, Nature, vol. 2(1), pages 1-5, September.
  • Handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1464
    DOI: 10.1038/ncomms1464
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1464
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junxiong Guo & Shuyi Gu & Lin Lin & Yu Liu & Ji Cai & Hongyi Cai & Yu Tian & Yuelin Zhang & Qinghua Zhang & Ze Liu & Yafei Zhang & Xiaosheng Zhang & Yuan Lin & Wen Huang & Lin Gu & Jinxing Zhang, 2024. "Type-printable photodetector arrays for multichannel meta-infrared imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.