IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v2y2011i1d10.1038_ncomms1448.html
   My bibliography  Save this article

Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds

Author

Listed:
  • Alexander Suh

    (Institute of Experimental Pathology (ZMBE), University of Münster)

  • Martin Paus

    (Institute of Experimental Pathology (ZMBE), University of Münster)

  • Martin Kiefmann

    (Institute of Experimental Pathology (ZMBE), University of Münster)

  • Gennady Churakov

    (Institute of Experimental Pathology (ZMBE), University of Münster)

  • Franziska Anni Franke

    (Molecular Evolution and Systematics of Animals, Institute for Biology II, University of Leipzig
    Auburn University, 101 Life Science Building, Auburn, Alabama 36849, USA.)

  • Jürgen Brosius

    (Institute of Experimental Pathology (ZMBE), University of Münster)

  • Jan Ole Kriegs

    (Institute of Experimental Pathology (ZMBE), University of Münster
    LWL-Museum für Naturkunde, Westfälisches Landesmuseum mit Planetarium)

  • Jürgen Schmitz

    (Institute of Experimental Pathology (ZMBE), University of Münster)

Abstract

The relationships of passerines (such as the well-studied zebra finch) with non-passerine birds is one of the great enigmas of avian phylogenetic research, because decades of extensive morphological and molecular studies yielded highly inconsistent results between and within data sets. Here we show the first application of the virtually homoplasy-free retroposon insertions to this controversy. Our study examined ~200,000 retroposon-containing loci from various avian genomes and retrieved 51 markers resolving early bird phylogeny. Among these, we obtained statistically significant evidence that parrots are the closest and falcons the second-closest relatives of passerines, together constituting the Psittacopasserae and the Eufalconimorphae, respectively. Our new and robust phylogenetic framework has substantial implications for the interpretation of various conclusions drawn from passerines as model organisms. This includes insights of relevance to human neuroscience, as vocal learning (that is, birdsong) probably evolved in the psittacopasseran ancestor, >30 million years earlier than previously assumed.

Suggested Citation

  • Alexander Suh & Martin Paus & Martin Kiefmann & Gennady Churakov & Franziska Anni Franke & Jürgen Brosius & Jan Ole Kriegs & Jürgen Schmitz, 2011. "Mesozoic retroposons reveal parrots as the closest living relatives of passerine birds," Nature Communications, Nature, vol. 2(1), pages 1-7, September.
  • Handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1448
    DOI: 10.1038/ncomms1448
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1448
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Shamsuzzoha Bayzid & Siavash Mirarab & Bastien Boussau & Tandy Warnow, 2015. "Weighted Statistical Binning: Enabling Statistically Consistent Genome-Scale Phylogenetic Analyses," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-40, June.
    2. Pahl, Cameron C. & Ruedas, Luis A., 2021. "Carnosaurs as Apex Scavengers: Agent-based simulations reveal possible vulture analogues in late Jurassic Dinosaurs," Ecological Modelling, Elsevier, vol. 458(C).
    3. Andrej Kuritzin & Tabea Kischka & Jürgen Schmitz & Gennady Churakov, 2016. "Incomplete Lineage Sorting and Hybridization Statistics for Large-Scale Retroposon Insertion Data," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-20, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.