IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v2y2011i1d10.1038_ncomms1237.html
   My bibliography  Save this article

The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain

Author

Listed:
  • Chao Xu

    (Structural Genomics Consortium, University of Toronto)

  • Chuanbing Bian

    (Structural Genomics Consortium, University of Toronto)

  • Robert Lam

    (Structural Genomics Consortium, University of Toronto)

  • Aiping Dong

    (Structural Genomics Consortium, University of Toronto)

  • Jinrong Min

    (Structural Genomics Consortium, University of Toronto
    University of Toronto)

Abstract

CFP1 is a CXXC domain-containing protein and an essential component of the SETD1 histone H3K4 methyltransferase complex. CXXC domain proteins direct different chromatin-modifying activities to various chromatin regions. Here, we report crystal structures of the CFP1 CXXC domain in complex with six different CpG DNA sequences. The crescent-shaped CFP1 CXXC domain is wedged into the major groove of the CpG DNA, distorting the B-form DNA, and interacts extensively with the major groove of the DNA. The structures elucidate the molecular mechanism of the non-methylated CpG-binding specificity of the CFP1 CXXC domain. The CpG motif is confined by a tripeptide located in a rigid loop, which only allows the accommodation of the non-methylated CpG dinucleotide. Furthermore, we demonstrate that CFP1 has a preference for a guanosine nucleotide following the CpG motif.

Suggested Citation

  • Chao Xu & Chuanbing Bian & Robert Lam & Aiping Dong & Jinrong Min, 2011. "The structural basis for selective binding of non-methylated CpG islands by the CFP1 CXXC domain," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
  • Handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1237
    DOI: 10.1038/ncomms1237
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1237
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seung Chel Yang & Mira Park & Kwon-Ho Hong & Hyeonwoo La & Chanhyeok Park & Peike Wang & Gaizhen Li & Qionghua Chen & Youngsok Choi & Francesco J. DeMayo & John P. Lydon & David G. Skalnik & Hyunjung , 2023. "CFP1 governs uterine epigenetic landscapes to intervene in progesterone responses for uterine physiology and suppression of endometriosis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.