IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v1y2010i1d10.1038_ncomms1149.html
   My bibliography  Save this article

Discrete plasticity in sub-10-nm-sized gold crystals

Author

Listed:
  • He Zheng

    (University of Pittsburgh
    School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University)

  • Ajing Cao

    (Northwestern University)

  • Christopher R. Weinberger

    (Materials Science and Engineering Center, Sandia National Laboratories)

  • Jian Yu Huang

    (Center for Integrated Nanotechnologies, Sandia National Laboratories)

  • Kui Du

    (Shenyang National Laboratory for Materials Science, Institute of Metal Research, CAS)

  • Jianbo Wang

    (School of Physics and Technology, Center for Electron Microscopy and MOE Key Laboratory of Artificial Micro- and Nano-structures, Wuhan University)

  • Yanyun Ma

    (Washington University)

  • Younan Xia

    (Washington University)

  • Scott X. Mao

    (University of Pittsburgh)

Abstract

Although deformation processes in submicron-sized metallic crystals are well documented, the direct observation of deformation mechanisms in crystals with dimensions below the sub-10-nm range is currently lacking. Here, through in situ high-resolution transmission electron microscopy (HRTEM) observations, we show that (1) in sharp contrast to what happens in bulk materials, in which plasticity is mediated by dislocation emission from Frank-Read sources and multiplication, partial dislocations emitted from free surfaces dominate the deformation of gold (Au) nanocrystals; (2) the crystallographic orientation (Schmid factor) is not the only factor in determining the deformation mechanism of nanometre-sized Au; and (3) the Au nanocrystal exhibits a phase transformation from a face-centered cubic to a body-centered tetragonal structure after failure. These findings provide direct experimental evidence for the vast amount of theoretical modelling on the deformation mechanisms of nanomaterials that have appeared in recent years.

Suggested Citation

  • He Zheng & Ajing Cao & Christopher R. Weinberger & Jian Yu Huang & Kui Du & Jianbo Wang & Yanyun Ma & Younan Xia & Scott X. Mao, 2010. "Discrete plasticity in sub-10-nm-sized gold crystals," Nature Communications, Nature, vol. 1(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:1:y:2010:i:1:d:10.1038_ncomms1149
    DOI: 10.1038/ncomms1149
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1149
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengpeng Yang & Bozhao Zhang & Libo Fu & Zhanxin Wang & Jiao Teng & Ruiwen Shao & Ziqi Wu & Xiaoxue Chang & Jun Ding & Lihua Wang & Xiaodong Han, 2023. "Chemical inhomogeneity–induced profuse nanotwinning and phase transformation in AuCu nanowires," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Shufen Chu & Pan Liu & Yin Zhang & Xiaodong Wang & Shuangxi Song & Ting Zhu & Ze Zhang & Xiaodong Han & Baode Sun & Mingwei Chen, 2022. "In situ atomic-scale observation of dislocation climb and grain boundary evolution in nanostructured metal," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Li Zhong & Yin Zhang & Xiang Wang & Ting Zhu & Scott X. Mao, 2024. "Atomic-scale observation of nucleation- and growth-controlled deformation twinning in body-centered cubic nanocrystals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:1:y:2010:i:1:d:10.1038_ncomms1149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.