IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58666-w.html
   My bibliography  Save this article

The role of pyruvate dehydrogenase in the lifespan determination of daphnids

Author

Listed:
  • Wenkai Chen

    (Huazhong Agricultural University)

  • Xueying Xu

    (Huazhong Agricultural University)

  • Zhidan Zeng

    (Huazhong Agricultural University)

  • Mingsen Zhou

    (Huazhong Agricultural University)

  • Jiying Chen

    (Huazhong Agricultural University)

  • Guangfu Hu

    (Huazhong Agricultural University)

  • Anfu Shen

    (Huazhong Agricultural University)

  • Dapeng Li

    (Huazhong Agricultural University)

  • Liu Xiangjiang

    (Huazhong Agricultural University)

Abstract

The general association between longevity and energy metabolism has been well-documented for some time, yet the specific metabolic processes that regulate longevity remain largely unexplored. In contrast to the common active swimming daphnids (e.g., Daphnia sinensis), Simocephalus vetulus is notable for being sedentary and having a lower metabolic rate, yet it has a longer lifespan than D. sinensis. In this study, metabolomic analysis and drug validation experiments are employed to demonstrate that the lower pyruvate dehydrogenase (PDH) activity reduces the locomotor performance of S. vetulus and to identify PDH activity as a regulator of the lifespan of daphnids. Inhibition of PDH activity in daphnids by CPI-613 attenuates its ATP supply and locomotor performance but significantly induces longevity. The study also determines that the invertebrate neurotransmitter octopamine and temperature have a significant impact on PDH activity and modulate daphnids lifespan. And when the effects of temperature and octopamine on PDH activity are counteracted by inhibitors or agonists, the impact on lifespan becomes ineffective. These results support an important role for PDH in lifespan regulation and locomotor performance in daphnids and provide insights into the metabolic regulation of lifespan.

Suggested Citation

  • Wenkai Chen & Xueying Xu & Zhidan Zeng & Mingsen Zhou & Jiying Chen & Guangfu Hu & Anfu Shen & Dapeng Li & Liu Xiangjiang, 2025. "The role of pyruvate dehydrogenase in the lifespan determination of daphnids," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58666-w
    DOI: 10.1038/s41467-025-58666-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58666-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58666-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58666-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.