Author
Listed:
- Matias E. Rodriguez
(Stockholm University)
- Ali Hassan
(Stockholm University)
- Nikolaos Linaroudis
(Stockholm University)
- Felix Harryson-Oliveberg
(Stockholm University)
- Arne L. Hoeve
(Stockholm University)
- Antonio Barragan
(Stockholm University)
Abstract
Microbial translocation across the blood-brain barrier (BBB) is a prerequisite for colonization of the central nervous system. The obligate intracellular parasite Toxoplasma gondii chronically infects the brain parenchyma of humans and animals, in a remarkably stealthy fashion. We investigated the mechanisms of BBB traversal by T. gondii (genotypes I, II, III) and T. gondii-infected leukocytes, using intracarotid arterial delivery into the cerebral circulation of mice. Unexpectedly, parasitized dendritic cells (DCs) and other peripheral blood mononuclear cells were found to persistently sequester within cortical capillaries. Post-replicative egress of T. gondii from sequestered DCs was followed by rapid parasite localization within cortical neurons. Infection-induced microvascular inflammation dramatically elevated the sequestration of parasitized DCs, while treatments targeting the ICAM-1/CD18 leukocyte adhesion axis with blocking antibodies strongly reverted sequestration. The parasite effectors TgWIP and GRA15, known to promote leukocyte hypermigration and inflammatory activation, further increased both the capillary sequestration of infected DCs and cerebral parasite loads in a strain-dependent manner. These findings reveal that the sequestration of parasitized leukocytes in cortical capillaries, with subsequent BBB traversal following parasite egress, provides a mechanism for T. gondii’s rapid access to cortical neurons during primary infection.
Suggested Citation
Matias E. Rodriguez & Ali Hassan & Nikolaos Linaroudis & Felix Harryson-Oliveberg & Arne L. Hoeve & Antonio Barragan, 2025.
"ICAM-1/CD18-mediated sequestration of parasitized phagocytes in cortical capillaries promotes neuronal colonization by Toxoplasma gondii,"
Nature Communications, Nature, vol. 16(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58655-z
DOI: 10.1038/s41467-025-58655-z
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58655-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.