Author
Listed:
- Lishun Bai
(Central South University)
- Yan Xu
(Central South University)
- Yue Liu
(Central South University)
- Danni Zhang
(Central South University)
- Shibin Zhang
(Central South University)
- Wujie Yang
(Nanjing University)
- Zhi Chang
(Central South University)
- Haoshen Zhou
(Nanjing University)
Abstract
The rapid evolution of portable electronics and electric vehicles necessitates batteries with high energy density, robust cycling stability, and fast charging capabilities. High-voltage cathodes, like LiNi0.8Co0.1Mn0.1O2 (NCM-811), promise enhanced energy density but are hampered by poor stability and sluggish lithium-ion diffusion in conventional electrolytes. We introduce a metal-organic framework (MOF) liquid-infusion technique to fully integrate MOF liquid into the grain boundaries of NCM-811, creating a thoroughly coated cathode with a thin, rigid MOF Glass layer. The surface electrically non-conductive MOF Glass layer with 2.9 Å pore windows facilitating Li-ion pre-desolvation and enabling highly aggregative electrolyte formation inside the Glass channels, suppressing solvated Li-ion co-insertion and solvent decomposition. While the inner Glass layer composes of Li-ion conducting components and enhancing fast Li-ion diffusion. This functional structure effectively shields the cathode from particle cracking, CEI rupture, oxygen loss, and transition metal migration. As a result, Li | |Glass@NCM-811 cells demonstrate good rate capability and cycling stability even under high-charge rates and elevated voltages. Furthermore, we also achieve a 385 Wh kg-1 pouch-cell (19.579 g, for pouch-cell), showcasing the practical potential of this method. This straightforward and versatile strategy can be applied to other high-voltage cathodes like Li-rich manganese oxides and LiCoO2.
Suggested Citation
Lishun Bai & Yan Xu & Yue Liu & Danni Zhang & Shibin Zhang & Wujie Yang & Zhi Chang & Haoshen Zhou, 2025.
"Metal-organic framework glass stabilizes high-voltage cathodes for efficient lithium-metal batteries,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58639-z
DOI: 10.1038/s41467-025-58639-z
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58639-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.