Author
Listed:
- R. Jarolim
(Institute of Physics
NSF National Center for Atmospheric Research)
- A. M. Veronig
(Institute of Physics
Kanzelhöhe Observatory for Solar and Environmental Research)
- W. Pötzi
(Kanzelhöhe Observatory for Solar and Environmental Research)
- T. Podladchikova
(Skolkovo Institute of Science and Technology)
Abstract
The constant improvement of astronomical instrumentation provides the foundation for scientific discoveries. In general, these improvements have only implications forward in time, while previous observations do not benefit from this trend, and the joint use of data sets from different instruments is typically limited by differences in calibration and quality. We provide a deep learning framework for Instrument-To-Instrument translation of solar observation data, enabling homogenized data series of multi-instrument data sets. This is achieved by unpaired domain translations with Generative Adversarial Networks, which eliminate the need for spatial or temporal overlap to relate instruments. We demonstrate that the available data sets can directly profit from instrumental improvements, by applying our method to four different applications of ground- and space-based solar observations. We obtain a homogenized data series of 24 years of space-based observations of the solar EUV corona and line-of-sight magnetic field, solar full-disk observations with increased spatial resolution, real-time mitigation of atmospheric degradations in ground-based observations, and unsigned magnetic field estimates from the solar far-side based on EUV imagery. The direct comparison to simultaneous high-quality observations shows that our method produces images that are perceptually similar, and enables more homogeneous multi-instrument data sets without the requirement of spatial or temporal alignment.
Suggested Citation
R. Jarolim & A. M. Veronig & W. Pötzi & T. Podladchikova, 2025.
"A deep learning framework for instrument-to-instrument translation of solar observation data,"
Nature Communications, Nature, vol. 16(1), pages 1-19, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58391-4
DOI: 10.1038/s41467-025-58391-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58391-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.