IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58349-6.html
   My bibliography  Save this article

Stochastic reservoir computers

Author

Listed:
  • Peter J. Ehlers

    (University of Arizona)

  • Hendra I. Nurdin

    (University of New South Wales)

  • Daniel Soh

    (University of Arizona)

Abstract

Reservoir computing is a form of machine learning that utilizes nonlinear dynamical systems to perform complex tasks in a cost-effective manner when compared to typical neural networks. Recent advancements in reservoir computing, in particular quantum reservoir computing, use reservoirs that are inherently stochastic. In this paper, we investigate the universality of stochastic reservoir computers which use the probabilities of each stochastic reservoir state as the readout instead of the states themselves. This allows the number of readouts to scale exponentially with the size of the reservoir hardware, offering the advantage of compact device size. We prove that classes of stochastic echo state networks form universal approximating classes. We also investigate the performance of two practical examples in classification and chaotic time series prediction. While shot noise is a limiting factor, we show significantly improved performance compared to a deterministic reservoir computer with similar hardware when noise effects are small.

Suggested Citation

  • Peter J. Ehlers & Hendra I. Nurdin & Daniel Soh, 2025. "Stochastic reservoir computers," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58349-6
    DOI: 10.1038/s41467-025-58349-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58349-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58349-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58349-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.