IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58343-y.html
   My bibliography  Save this article

A human model to deconvolve genotype-phenotype causations in lung squamous cell carcinoma

Author

Listed:
  • Julia Ogden

    (Wilmslow Road)

  • Robert Sellers

    (Wilmslow Road)

  • Sudhakar Sahoo

    (Wilmslow Road)

  • Anthony Oojageer

    (Wilmslow Road)

  • Anshuman Chaturvedi

    (Wilmslow Road)

  • Caroline Dive

    (Wilmslow Road
    Wilmslow Road
    Wilmslow Road)

  • Carlos Lopez-Garcia

    (Wilmslow Road
    Wilmslow Road)

Abstract

Tractable, patient-relevant models are needed to investigate cancer progression and heterogeneity. Here, we report an alternative in vitro model of lung squamous cell carcinoma (LUSC) using primary human bronchial epithelial cells (hBECs) from three healthy donors. The co-operation of ubiquitous alterations (TP53 and CDKN2A loss) and components of commonly deregulated pathways including squamous differentiation (SOX2), PI3K signalling (PTEN) and the oxidative stress response (KEAP1) is investigated by generating hBECs harbouring cumulative alterations. Our analyses confirms that SOX2-overexpression initiates early preinvasive LUSC stages, and co-operation with the oxidative stress response and PI3K pathways to drive more aggressive phenotypes, with expansion of cells expressing LUSC biomarkers and invasive properties. This cooperation is consistent with the classical LUSC subtype. Importantly, we connect pathway dysregulation with gene expression changes associated with cell-intrinsic processes and immunomodulation. Our approach constitutes a powerful system to model LUSC and unravel genotype-phenotype causations of clinical relevance.

Suggested Citation

  • Julia Ogden & Robert Sellers & Sudhakar Sahoo & Anthony Oojageer & Anshuman Chaturvedi & Caroline Dive & Carlos Lopez-Garcia, 2025. "A human model to deconvolve genotype-phenotype causations in lung squamous cell carcinoma," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58343-y
    DOI: 10.1038/s41467-025-58343-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58343-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58343-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58343-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.