IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58270-y.html
   My bibliography  Save this article

Dynamic coding and sequential integration of multiple reward attributes by primate amygdala neurons

Author

Listed:
  • Fabian Grabenhorst

    (University of Oxford)

  • Raymundo Báez-Mendoza

    (German Primate Center)

Abstract

The value of visual stimuli guides learning, decision-making, and motivation. Although stimulus values often depend on multiple attributes, how neurons extract and integrate distinct value components from separate cues remains unclear. Here we recorded the activity of amygdala neurons while two male monkeys viewed sequential cues indicating the probability and magnitude of expected rewards. Amygdala neurons frequently signaled reward probability in an abstract, stimulus-independent code that generalized across cue formats. While some probability-coding neurons were insensitive to magnitude information, signaling ‘pure’ probability rather than value, many neurons showed biphasic responses that signaled probability and magnitude in a dynamic (temporally-patterned) and flexible (reversible) value code. Specific amygdala neurons integrated these reward attributes into risk signals that quantified the variance of expected rewards, distinct from value. Population codes were accurate, mutually transferable between value components, and expressed differently across amygdala nuclei. Our findings identify amygdala neurons as a substrate for the sequential integration of multiple reward attributes into value and risk.

Suggested Citation

  • Fabian Grabenhorst & Raymundo Báez-Mendoza, 2025. "Dynamic coding and sequential integration of multiple reward attributes by primate amygdala neurons," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58270-y
    DOI: 10.1038/s41467-025-58270-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58270-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58270-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58270-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.