Author
Listed:
- Siyu Qiang
(Donghua University)
- Fan Wu
(Shanghai University of Engineering Science)
- Hualei Liu
(Shanghai University of Engineering Science)
- Sijuan Zeng
(Donghua University)
- Shuyu Liu
(Donghua University)
- Jin Dai
(Donghua University)
- Xiaohua Zhang
(Donghua University)
- Jianyong Yu
(Donghua University)
- Yi-Tao Liu
(Donghua University
Donghua University)
- Bin Ding
(Donghua University
Shanghai University of Engineering Science
Donghua University)
Abstract
The developing cutting-edge technologies involving extreme mechanical environments, such as high-frequency vibrations, mechanical shocks, or repeated twisting, require ceramic components to integrate high strength, large bending strain, and even plastic deformation, which is difficult in conventional ceramic materials. The emergence of ceramic nanofibers (CNFs) offers potential solutions; unfortunately, this desirable integration of mechanical properties in CNFs remains unrealized to date, due to challenges in precisely modulating microstructures, reducing cross-scale defects, and overcoming inherent contradictions between mechanical attributes (particularly, high strength and large deformation are often mutually exclusive). Here, we report a nucleation regulation strategy for crystalline/amorphous dual-phase CNFs, achieving an extraordinary integration of high strength, superior flexibility, and room-temperature plasticity. This advancement stems from the optimized dual-phase structure featuring reduced nanocrystal aggregation, increased internal interfaces, and the elimination of fiber defects, thus fully activating the synergistic advantages and multiple deformation mechanisms of dual-phase configurations. Using TiO2, which is typically characterized by brittleness and low strength, as the proof-of-concept model, in-situ single-nanofiber mechanical tests demonstrate excellent flexibility, strength (~1.06 GPa), strain limit (~8.44%), and room-temperature plastic deformation. These findings would provide valuable insights into the mechanical design of ceramic materials, paving the way for CNFs in extreme applications and their widespread industrialization.
Suggested Citation
Siyu Qiang & Fan Wu & Hualei Liu & Sijuan Zeng & Shuyu Liu & Jin Dai & Xiaohua Zhang & Jianyong Yu & Yi-Tao Liu & Bin Ding, 2025.
"Integration of high strength, flexibility, and room-temperature plasticity in ceramic nanofibers,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58240-4
DOI: 10.1038/s41467-025-58240-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58240-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.