IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58206-6.html
   My bibliography  Save this article

Energy-ordered resource stratification as an agnostic signature of life

Author

Listed:
  • Akshit Goyal

    (Tata Institute of Fundamental Research)

  • Mikhail Tikhonov

    (Washington University in St Louis)

Abstract

The search for extraterrestrial life hinges on identifying biosignatures, often focusing on gaseous metabolic byproducts as indicators. However, most such biosignatures require assuming specific metabolic processes. It is widely recognized that life on other planets may not resemble that of Earth, but identifying biosignatures “agnostic” to such assumptions has remained a challenge. Here, we propose a novel approach by considering the generic outcome of life: the formation of competing ecosystems. We use a minimal model to argue that the presence of ecosystem-level dynamics, characterized by ecological interactions and resource competition, may yield biosignatures independent of specific metabolic activities. Specifically, we propose the emergent stratification of chemical resources in order of decreasing energy content as a candidate new biosignature. While likely inaccessible to remote sensing, this signature could be relevant for sample return missions, or for detection of ancient signatures of life on Earth itself.

Suggested Citation

  • Akshit Goyal & Mikhail Tikhonov, 2025. "Energy-ordered resource stratification as an agnostic signature of life," Nature Communications, Nature, vol. 16(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58206-6
    DOI: 10.1038/s41467-025-58206-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58206-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58206-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58206-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.