Author
Listed:
- Lindsey A. Allan
(University of Dundee)
- Andrea Corno
(University of Dundee)
- Juan Manuel Valverde
(University of Dundee)
- Rachel Toth
(University of Dundee)
- Tony Ly
(University of Dundee)
- Adrian T. Saurin
(University of Dundee)
Abstract
Serine-threonine phosphatases have been challenging to study because of the lack of specific inhibitors. Their catalytic domains are druggable, but these are shared or very similar between individual phosphatase complexes, precluding their specific inhibition. Instead, phosphatase complexes often achieve specificity by interacting with short linear motifs (SLiMs) in substrates or their binding partners. We develop here a chemical-genetic system to rapidly inhibit these interactions within the PP2A-B56 family. Drug-inducible recruitment of ectopic SLiMs (“directSLiMs”) is used to rapidly block the SLiM-binding pocket on the B56 regulatory subunit, thereby displacing endogenous interactors and inhibiting PP2A-B56 activity within seconds. We use this system to characterise PP2A-B56 substrates during mitosis and to identify a role for PP2A-B56 in allowing metaphase kinetochores to properly sense tension and maintain microtubule attachments. The directSLiMs approach can be used to inhibit any other phosphatase, enzyme or protein that uses a critical SLiM-binding interface, providing a powerful strategy to inhibit and characterise proteins once considered “undruggable”.
Suggested Citation
Lindsey A. Allan & Andrea Corno & Juan Manuel Valverde & Rachel Toth & Tony Ly & Adrian T. Saurin, 2025.
"A chemical-genetic system to rapidly inhibit the PP2A-B56 phosphatase reveals a role at metaphase kinetochores,"
Nature Communications, Nature, vol. 16(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58185-8
DOI: 10.1038/s41467-025-58185-8
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58185-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.