Author
Listed:
- Jie Wu
(Tsinghua University)
- Yue Wang
(Chinese Academy of Sciences)
- Haodong Chen
(Tsinghua University)
- Tongda Xu
(Fujian Agriculture and Forestry University)
- Wenqiang Yang
(Chinese Academy of Sciences)
- Xiaofeng Fang
(Tsinghua University)
Abstract
Heat stress inhibits photosynthesis efficiency, thereby suppressing plant growth and crop yield. However, the mechanism underlying this inhibition is not fully understood. Here, we report that the multiple organellar RNA-editing factor 8 (MORF8) forms condensates with solid-like properties in chloroplasts upon heat stress. In vitro data show that the MORF8 condensation is intrinsically heat-dependent and primarily determined by its IDR (intrinsically disordered region). Purification and characterization of MORF8 condensates show that numerous editing factors including PPR proteins and MORFs are partitioned. We provide both genetic and biochemical evidence that MORF8 condensation inhibits chloroplast RNA editing. In agreement, we find that both heat stress and MORF8 condensation lead to reduced editing of RNAs encoding NADH dehydrogenase-like (NDH) complex and impaired NDH activity and photosynthesis efficiency. These findings uncover MORF8 as a putative chloroplastic thermosensor that mediates photosynthesis inhibition by heat and highlight the functional significance of solid material properties of biomolecular condensates.
Suggested Citation
Jie Wu & Yue Wang & Haodong Chen & Tongda Xu & Wenqiang Yang & Xiaofeng Fang, 2025.
"Solid-like condensation of MORF8 inhibits RNA editing under heat stress in Arabidopsis,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58146-1
DOI: 10.1038/s41467-025-58146-1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58146-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.