Author
Listed:
- Yusheng Jiao
(University of Southern California)
- Haotian Hang
(University of Southern California)
- Josh Merel
(Fauna Robotics)
- Eva Kanso
(University of Southern California
University of Southern California)
Abstract
Aquatic animals are much better at underwater navigation than robotic vehicles. Robots face major challenges in deep water because of their limited access to global positioning signals and flow maps. These limitations, and the changing nature of water currents, support the use of reinforcement learning approaches, where the navigator learns through trial-and-error interactions with the flow environment. But is it feasible to learn underwater navigation in the agent’s Umwelt, without any land references? Here, we tasked an artificial swimmer with learning to reach a specific destination in unsteady flows by relying solely on egocentric observations, collected through on-board flow sensors in the agent’s body frame, with no reference to a geocentric inertial frame. We found that while sensing local flow velocities is sufficient for geocentric navigation, successful egocentric navigation requires additional information of local flow gradients. Importantly, egocentric navigation strategies obey rotational symmetry and are more robust in unfamiliar conditions and flows not experienced during training. Our work expands underwater robot-centric learning, helps explain why aquatic organisms have arrays of flow sensors that detect gradients, and provides physics-based guidelines for transfer learning of learned policies to unfamiliar and diverse flow environments.
Suggested Citation
Yusheng Jiao & Haotian Hang & Josh Merel & Eva Kanso, 2025.
"Sensing flow gradients is necessary for learning autonomous underwater navigation,"
Nature Communications, Nature, vol. 16(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58125-6
DOI: 10.1038/s41467-025-58125-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58125-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.