Author
Listed:
- Yao Du
(Beijing Forestry University
Beijing Forestry University
Beijing Forestry University)
- Yan Yang
(Beijing Forestry University)
- Shengnan Wu
(Beijing Forestry University)
- Xiaoxia Gao
(Beijing Forestry University)
- Xiaoqing He
(Beijing Forestry University
Beijing Forestry University)
- Shikui Dong
(Beijing Forestry University
Beijing Forestry University)
Abstract
The alpine grasslands of the Qinghai-Tibetan Plateau (QTP), the world’s highest plateau, have been severely degraded. To address this degradation, human-involved restoration efforts, including grassland cultivation, have been implemented. However, the impact of these practices on soil microbial community stability and its relationship with plant-soil system resilience has not been explored. In this study, we evaluate the effects of grassland restoration on microbial communities. We show that bacteria demonstrate higher composition resistance and resilience during the restoration process, when compared to fungi. The changes we observe in microbial community interactions support the stress gradient hypothesis. Our results emphasize the synergistic role of network resilience and the restoration of the plant-soil system. Importantly, we find that core microbial species significantly influence the resilience of the plant-soil system by sustaining the co-occurrence networks. These insights underscore the critical roles of microbial communities in grassland restoration and suggest new strategies for boosting grassland resilience by safeguarding core microbes.
Suggested Citation
Yao Du & Yan Yang & Shengnan Wu & Xiaoxia Gao & Xiaoqing He & Shikui Dong, 2025.
"Core microbes regulate plant-soil resilience by maintaining network resilience during long-term restoration of alpine grasslands,"
Nature Communications, Nature, vol. 16(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58080-2
DOI: 10.1038/s41467-025-58080-2
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58080-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.