Author
Listed:
- Siqi He
(Sun Yat-sen University)
- Weiwen Liang
(Sun Yat-sen University)
- Youchen Tang
(Sun Yat-sen University)
- Jinquan Zhang
(Sun Yat-sen University)
- Runxian Wang
(Sun Yat-sen University)
- Luna Quan
(Sun Yat-sen University)
- Yang Ouyang
(Sun Yat-sen University)
- Rongkang Huang
(Sun Yat-sen University)
- Ruoxu Dou
(Sun Yat-sen University)
- Dingcai Wu
(Sun Yat-sen University)
Abstract
Well-orchestrated integration of multiple contradictory properties into a single material is crucial for dynamic soft tissue defect repair but remains challenging. Bioinspired by diaphragm, we have successfully developed a robust super-structured porous hydrogel with anisotropic skeleton and asymmetric porous surfaces via integrated molding. Thanks to synergistic toughening of anisotropic structure and Hofmeister effect of amino acid, our hydrogel achieves high tensile strength (22.2 MPa) and elastic modulus (32.4 MPa) for strong mechanical support, while maintaining excellent toughness (61.9 MJ m−3) and fatigue threshold (5.6 kJ m−2) against dynamic stretching during the early healing phase. The mechanical properties of hydrogel gradually decrease during the late healing phase, minimizing its restriction on physiological movements. In addition, diaphragm defect repair models on female rabbits demonstrate asymmetric porous surfaces can simultaneously prevent visceral adhesion and promote defect healing. Therefore, our hydrogel opens an attractive avenue for the construction of biomimetically hierarchical materials to address the stringent requirements of dynamic tissue defect repair.
Suggested Citation
Siqi He & Weiwen Liang & Youchen Tang & Jinquan Zhang & Runxian Wang & Luna Quan & Yang Ouyang & Rongkang Huang & Ruoxu Dou & Dingcai Wu, 2025.
"Robust super-structured porous hydrogel enables bioadaptive repair of dynamic soft tissue,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58062-4
DOI: 10.1038/s41467-025-58062-4
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58062-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.