Author
Listed:
- Chuannan Fan
(Leiden University Medical Center)
- Qian Wang
(Leiden University Medical Center)
- Peter H. L. Krijger
(Hubrecht Institute-KNAW and University Medical Center Utrecht)
- Davy Cats
(Sequencing Analysis Support Core, Leiden University Medical Center)
- Miriam Selle
(SciLifeLab and Karolinska Institute)
- Olga Khorosjutina
(SciLifeLab and Karolinska Institute)
- Soniya Dhanjal
(SciLifeLab and Karolinska Institute)
- Bernhard Schmierer
(SciLifeLab and Karolinska Institute)
- Hailiang Mei
(Sequencing Analysis Support Core, Leiden University Medical Center)
- Wouter de Laat
(Hubrecht Institute-KNAW and University Medical Center Utrecht)
- Peter ten Dijke
(Leiden University Medical Center)
Abstract
Enhancer RNAs (eRNAs) are a pivotal class of enhancer-derived non-coding RNAs that drive gene expression. Here we identify the SNAI1 enhancer RNA (SNAI1e; SCREEM2) as a key activator of SNAI1 expression and a potent enforcer of transforming growth factor-β (TGF-β)/SMAD signaling in cancer cells. SNAI1e depletion impairs TGF-β-induced epithelial-mesenchymal transition (EMT), migration, in vivo extravasation, stemness, and chemotherapy resistance in breast cancer cells. SNAI1e functions as an eRNA to cis-regulate SNAI1 enhancer activity by binding to and strengthening the enrichment of the transcriptional co-activator bromodomain containing protein 4 (BRD4) at the local enhancer. SNAI1e selectively promotes the expression of SNAI1, which encodes the EMT transcription factor SNAI1. Furthermore, we reveal that SNAI1 interacts with and anchors the inhibitory SMAD7 in the nucleus, and thereby prevents TGF-β type I receptor (TβRI) polyubiquitination and proteasomal degradation. Our findings establish SNAI1e as a critical driver of SNAI1 expression and TGF-β-induced cell plasticity.
Suggested Citation
Chuannan Fan & Qian Wang & Peter H. L. Krijger & Davy Cats & Miriam Selle & Olga Khorosjutina & Soniya Dhanjal & Bernhard Schmierer & Hailiang Mei & Wouter de Laat & Peter ten Dijke, 2025.
"Identification of a SNAI1 enhancer RNA that drives cancer cell plasticity,"
Nature Communications, Nature, vol. 16(1), pages 1-19, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58032-w
DOI: 10.1038/s41467-025-58032-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58032-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.