Author
Listed:
- Xuyang Zhou
(Max-Planck-Institut for Sustainable Materials (Max-Planck-Institut für Eisenforschung))
- Baptiste Bienvenu
(Max-Planck-Institut for Sustainable Materials (Max-Planck-Institut für Eisenforschung))
- Yuxiang Wu
(Max-Planck-Institut for Sustainable Materials (Max-Planck-Institut für Eisenforschung))
- Alisson Kwiatkowski da Silva
(Max-Planck-Institut for Sustainable Materials (Max-Planck-Institut für Eisenforschung))
- Colin Ophus
(Lawrence Berkeley National Laboratory)
- Dierk Raabe
(Max-Planck-Institut for Sustainable Materials (Max-Planck-Institut für Eisenforschung))
Abstract
Synthesizing distinct phases and controlling crystalline defects are key concepts in materials design. These approaches are often decoupled, with the former grounded in equilibrium thermodynamics and the latter in nonequilibrium kinetics. By unifying them through defect phase diagrams, we can apply phase equilibrium models to thermodynamically evaluate defects—including dislocations, grain boundaries, and phase boundaries—establishing a theoretical framework linking material imperfections to properties. Using scanning transmission electron microscopy (STEM) with differential phase contrast (DPC) imaging, we achieve the simultaneous imaging of heavy Fe and light O atoms, precisely mapping the atomic structure and chemical composition at the iron-magnetite (Fe/Fe3O4) interface. We identify a well-ordered two-layer interface-stabilized phase state (referred to as complexion) at the Fe[001]/Fe3O4[001] interface. Using density-functional theory (DFT), we explain the observed complexion and map out various interface-stabilized phases as a function of the O chemical potential. The formation of complexions increases interface adhesion by 20% and alters charge transfer between adjacent materials, impacting transport properties. Our findings highlight the potential of tunable defect-stabilized phase states as a degree of freedom in materials design, enabling optimized corrosion protection, catalysis, and redox-driven phase transitions, with applications in materials sustainability, efficient energy conversion, and green steel production.
Suggested Citation
Xuyang Zhou & Baptiste Bienvenu & Yuxiang Wu & Alisson Kwiatkowski da Silva & Colin Ophus & Dierk Raabe, 2025.
"Complexions at the iron-magnetite interface,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58022-y
DOI: 10.1038/s41467-025-58022-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58022-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.