Author
Listed:
- Ruihe Li
(Imperial College London
The Faraday Institution)
- Niall D. Kirkaldy
(Imperial College London
The Faraday Institution)
- Fabian F. Oehler
(Arcisstr. 21)
- Monica Marinescu
(Imperial College London
The Faraday Institution)
- Gregory J. Offer
(Imperial College London
The Faraday Institution)
- Simon E. J. O’Kane
(Imperial College London
The Faraday Institution)
Abstract
Predicting lithium-ion battery lifetime remains a critical and challenging issue in battery research right now. Recent years have witnessed a surge in lifetime prediction papers using physics-based, empirical, or data-driven models, most of which have been validated against the remaining capacity (capacity fade) and sometimes resistance (power fade). However, there are many different combinations of degradation mechanisms in lithium-ion batteries that can result in the same patterns of capacity and power fade, making it impossible to find a unique validated solution. Experimentally, degradation mode analysis involving measuring the loss of lithium inventory, loss of active material at both electrodes, and electrode drift/slippage has emerged as a state-of-the-art requirement for cell degradation studies. This work represents the integration of five distinct degradation mechanisms. We show how three models with different levels of complexity can all fit the remaining capacity and resistance well, but only the model with five coupled degradation mechanisms could also fit the degradation modes at three temperatures. This work proves that parameterizing using only capacity and power fade is no longer sufficient, and experimental and modelling degradation studies should include degradation mode analysis for parameterization in the future.
Suggested Citation
Ruihe Li & Niall D. Kirkaldy & Fabian F. Oehler & Monica Marinescu & Gregory J. Offer & Simon E. J. O’Kane, 2025.
"The importance of degradation mode analysis in parameterising lifetime prediction models of lithium-ion battery degradation,"
Nature Communications, Nature, vol. 16(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57968-3
DOI: 10.1038/s41467-025-57968-3
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57968-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.